

DECLARATION OF PERFORMANCE

DoP: 0133

for fischer capsule system RM II (Bonded anchor for use in concrete) - EN

- 1. Unique identification code of the product-type: DoP: 0133
- 2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 7
- 3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany
- 4. Authorised representative: --
- 5. System/s of AVCP: 1
- 6. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-16/0340; 2017-10-06

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1), Safety in use (BWR 4)

Characteristic resistance for static and quasi static action: See appendix, especially Annexes C 1 to C 6

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- Resistance to fire: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

1.V. A. Dun

i.V. W. Malal

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

Tumlingen, 2017-10-13

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer capsule system RM II is a bonded anchor for use in concrete consisting of a capsule RM II and a steel element according to Annex A1.

The capsule RM II is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 6

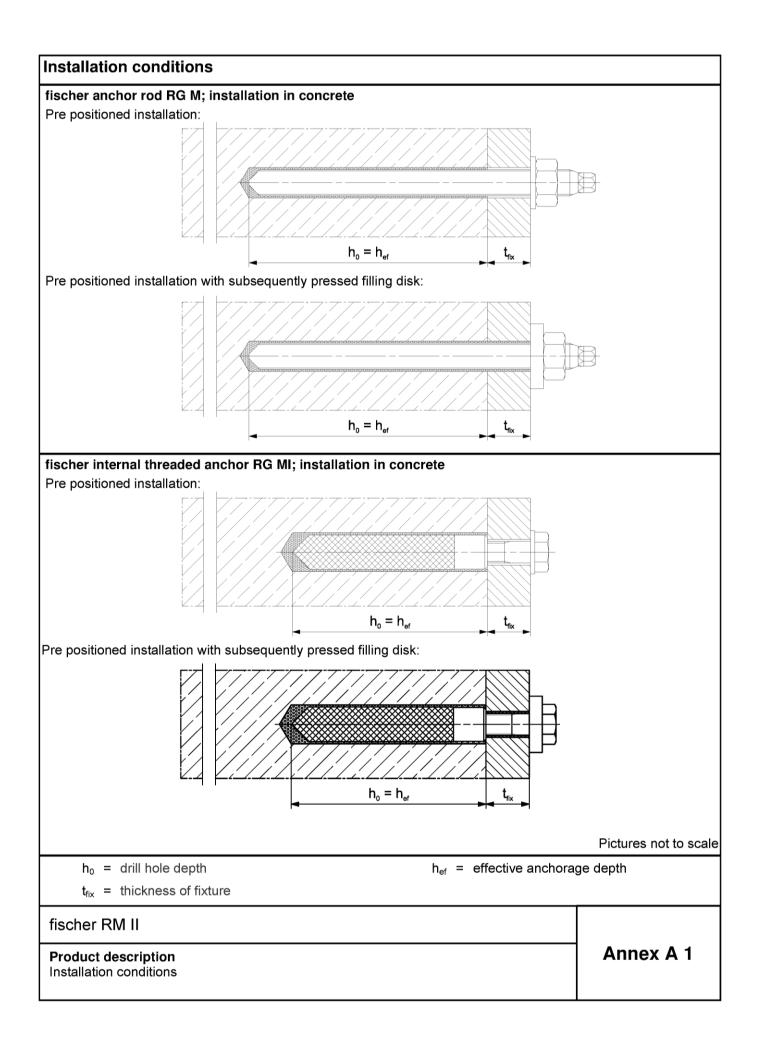
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Appendix 3 / 18

Overview product components	
Capsule RM II	
Size: 8, 10, 12, 16, 16E, 20/22, 24	
fischer anchor rod RG M	
Size: M8, M10, M12, M16, M20, M24	
fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disk FFD	
	Pictures not to scale
fischer RM II	
Product description Overview product components	Annex A 2

Part	Designation		Material	
1	Capsule RM II		Mortar, hardener, filler	
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ²	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f _{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²
			Fracture elongation $A_5 > 8 \%$	
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %
7	Filling disk FFD similar to DIN 6319-G	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014

Product description Materials Annex A 3

Specifications of i								
	erview use and pe	erformance cate	•					
Anchorages subject to		fischer an		I II with	ernal th	nreaded anchor		
		RG			RG			
Hammer drilling with standard drill bit	######################################	all si	zes		all si	zes		
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")		Nominal drill (d₀) 12 mm			all si	zes		
Static and quasi static	uncracked concrete	all sizes		all sizes				
load, in	cracked concrete	M10, M12, M16, M20, M24	Tables: C1.1, C3.1,			Tables: C2.1, C3.1,		
	dry or wet concrete	all sizes	C4.1, C6.1	all size	es	C5.1, C6.2		
Use category	flooded hole	M12, M16, M20, M24		M8, M10,	M16			
Installation temperature		-15 °C to +40 °C						
	Temperature range I	-40 °C to +40 °C	(max. short ter max. long terr					
In-service temperature	Temperature range II	-40 °C to +80 °C		ature +80 °C and ture +50 °C)				
	Temperature range III	-40 °C to +120 °C	C (max. short ter max. long terr					
fischer RM II								
Intended Use Specifications (part 1))				Ar	nnex B 1		

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

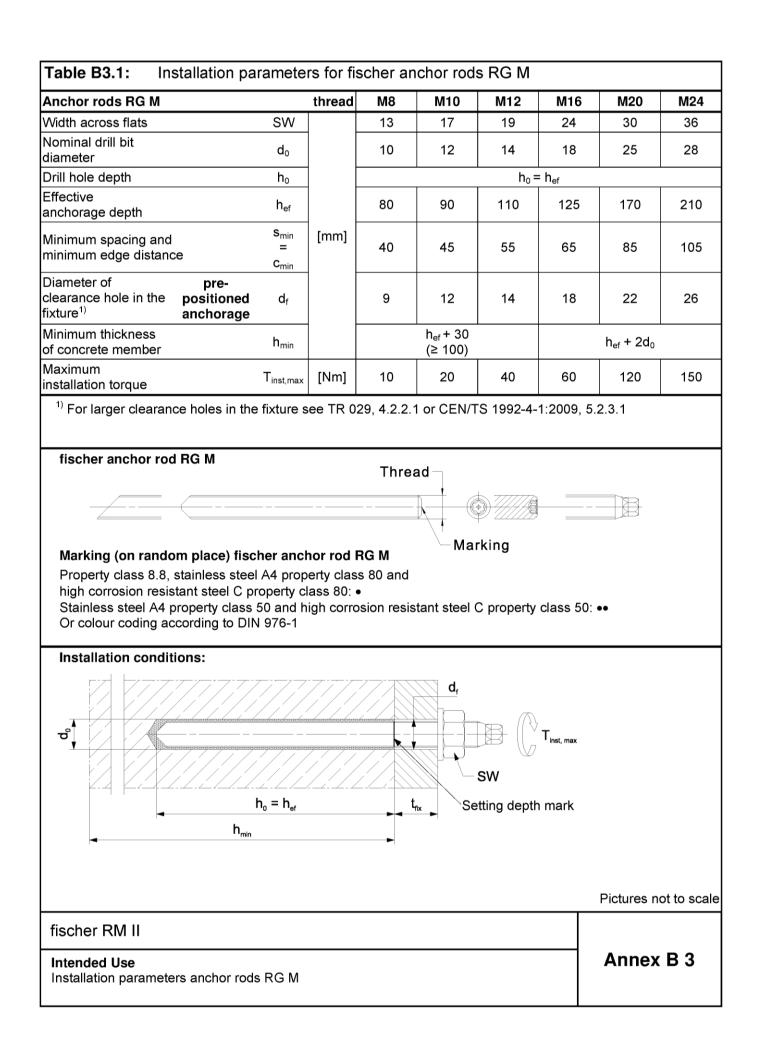
Use conditions (Environmental conditions):

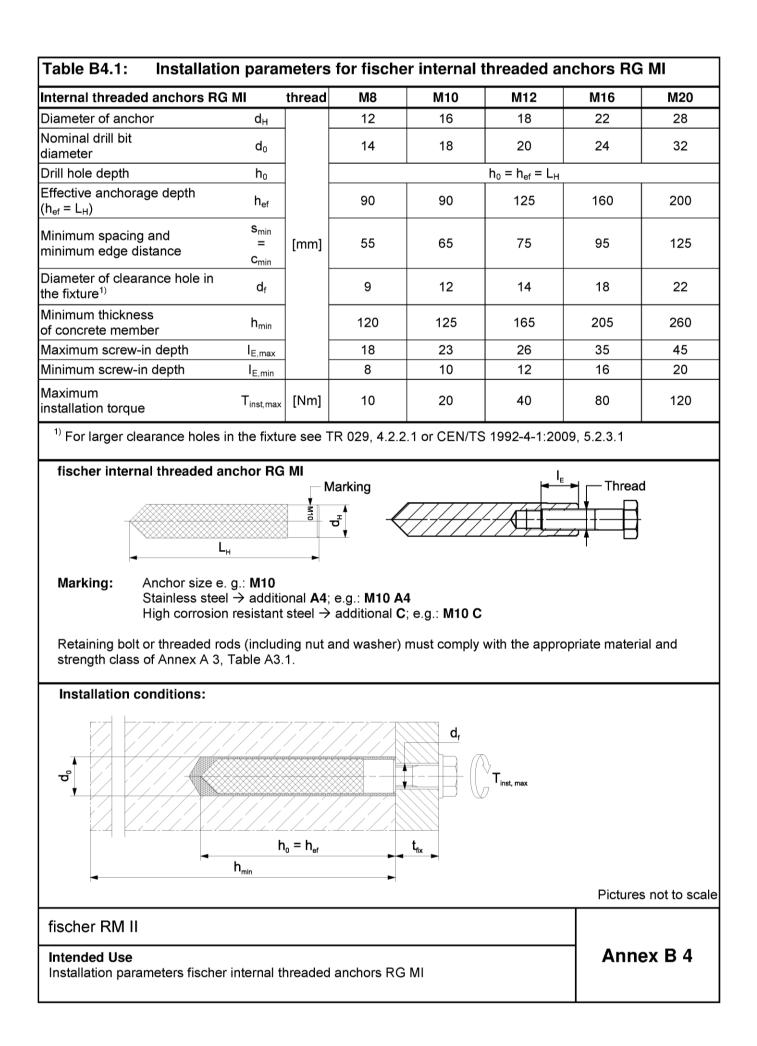
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution

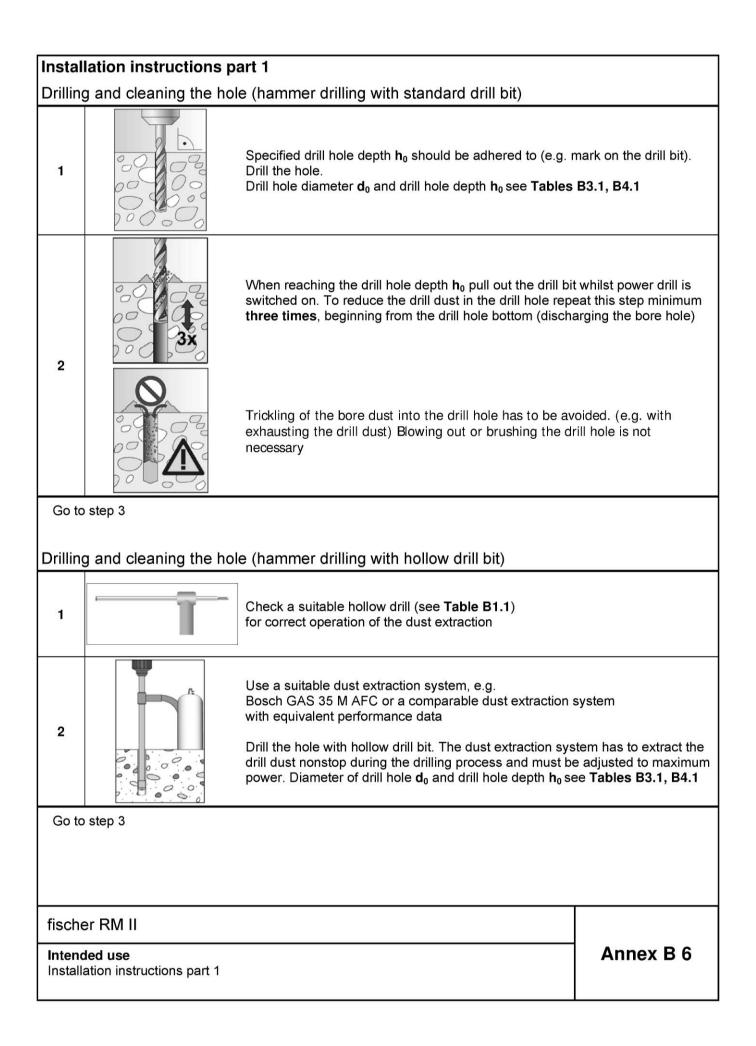
(e.g. in desulphurization plants or road tunnels where de-icing materials are used)

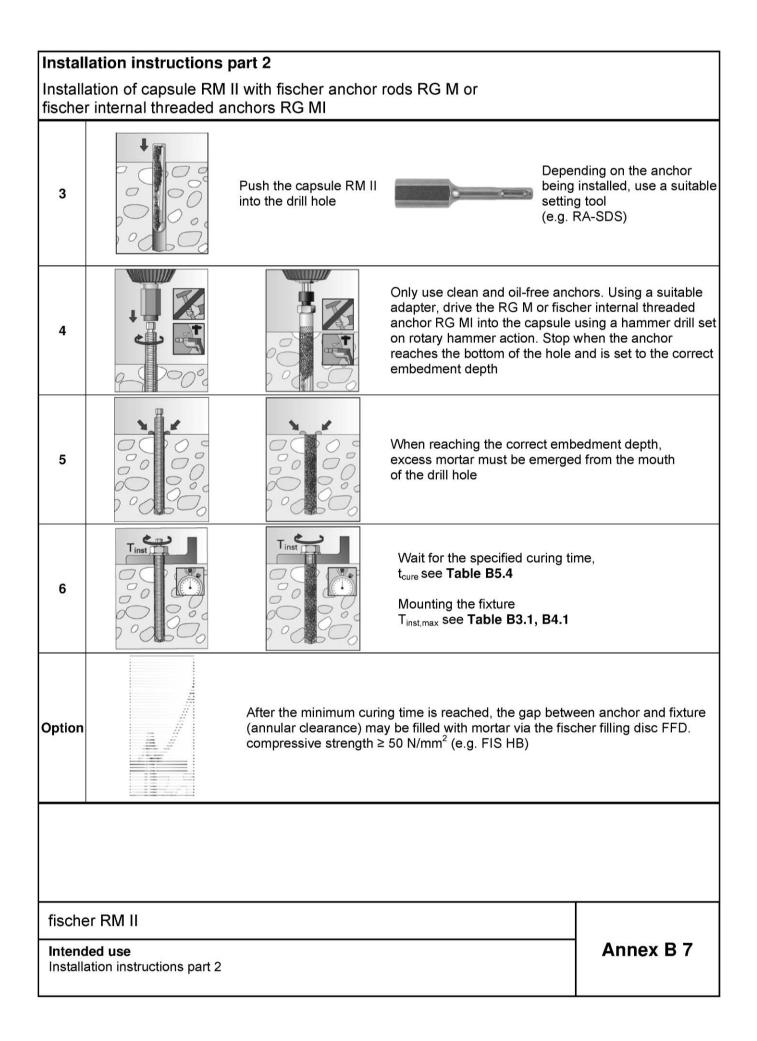
Design:


- Anchorages have to designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009


Installation:

- Anchor installation has to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed


fischer RM II


Intended Use Specifications (part 2)

		6	1.0	10		10			00/00	
Capsule RM II		8	10	12		16	16	E	20/22	24
diameter	[∦] P [mm]	9,0	10,5	12,5		1	6,5		2	23,0
Capsule L length	-P	85	90	97		95	123	3	160	190
Table B5.2:	Assig	nment of	the capsule	RM II L _P	he fis	scher a	anchor	rod	RG M	
Anchor rod RG I	M		M8	M10	Ν	/112	M16	;	M20	M24
Effective		h _{ef} [mm]	80	90	1	110	125		170	210
anchorage depth Related capsule I	RMII	[-]	8	10		12	16		20/22	24
Table B5.3:			the capsule	e RM II to t	he fis	scher i	nternal	thre	eaded anc	hor RG N
Internal threaded	d ancho	r RG MI	M8	M10		M	12		M16	M20
Effective anchorage depth		h _{ef} [mm]	90	90		12	25		160	200
Related capsule I	RM II	[-]	10	12		1	6		16E	24
Concrete tempe	(Durin listed		g time time of the m mperature; m	inimal capsu	le terr imum	curing	e -15 °C		ot fall below	the
[°C]					1	cure				
-15 bis -1						30 h				
-10 bis -6 -5 bis -1						l6 h l0 h				
±0 bis +4						5 min				
+5 bis +9) min				
+10 bis +) min				
+20 bis +2 +30 bis +4						min min				
									1	
									1	

ncha	or rod RG M				M8	M10	M12	M16	M20	M24		
Bearir	ng capacity under	tensile loa	d, stee	el failu	re	_			_			
ູ	Steel zinc plated		5.8		19	29	43	79	123	177		
earir N _{Rk.}		_	8.8		29	47	68	126	196	282		
ity –	Stainless steel	Property class	50	[kN]	19	29	43	79	123	177		
Charact.bearing capacity N _{Rk,s}	A4 and High corrosion	class	70		26	41	59	110	172	247		
చ్ ^బ	resistant steel C		80		30	47	68	126	196	282		
Partia	l safety factors ¹⁾											
>	Steel zinc plated		5.8		1,50							
afet ^{Ms,N}		-	8.8		1,50							
artial safet _i factor _{YMs.N}	Stainless steel A4 and	Property class	50	[-]	2,86							
Partial safety factor _{YMs,N}	High corrosion		70		1,50 ²⁾ / 1,87							
	resistant steel C		80 1,60									
	ng capacity under	shear load	l, steel	failur	е							
vitho	ut lever arm		5.8		9	15	21	39	61	89		
ring ^{k,s}	Steel zinc plated	Property	8.8		15	23	34	63	98	141		
bea ty √	Stainless steel		50	FLAU	9	15	21	39	61	89		
R A4 and	class	70	[kN]	13	20	30	55	86	124			
Cha	High corrosion resistant steel C		80		15	23	34	63	98	141		
	ty factor acc. to CE		k ₂	[-]		1	1.	0				
	4-5:2009 Section 6 ever arm	.3.2.1	112				•,	0				
			5.8		19	37	65	166	324	560		
ndin ا ^{ر Rk}	Steel zinc plated		8.8		30	60	105	266	519	896		
t.ber int N	Stainless steel	Property	50	[Nm]	19	37	65	166	324	560		
arac ome	A4 and	class	70	[]	26	52	92	232	454	784		
Charact.bendin g moment M ⁰ _{Rk,s}	High corrosion resistant steel C		80		30	60	105	266	519	896		
	I safety factors ¹⁾	1				1			1			
	Steel zinc plated		5.8				,	25				
afety ^{As,V}			8.8				1,:	25				
artial safet factor γ _{Ms,V}	Stainless steel	Property class	50	[-]			2,3					
Partial safety factor γ _{Ms,V}	A4 and High corrosion	01033	70	_			1,25 ²⁾	/ 1,56				
ц	resistant steel C		80				1,:	33				
²⁾ O	absence of other r only for fischer RG				n-resistant	steel C						
fisch	ner RM II											

Table C2.1:						earing cap under tensi	-					
Internal threaded	l anch	or RG MI			M8	M10	M12	M16	M20			
Bearing capacity	unde	r tensile loa	ad, stee	el failu	re				-			
		Property	5.8		19	29	43	79	123			
Characteristic bearing capacity	М	class	8.8	[kN]	29	47	68	108	179			
with screw	N _{Rk,s}	Property	A4		26	41	59	110	172			
		class 70	С		26	41	59	110	172			
Partial safety fac	tors ¹⁾											
		Property	5.8		1,50							
Partial safety	N	class	8.8	[-]	1,50							
factor	γMs,N	Property	A4	[[-]	1,87							
	class 70		С			1,87						
Bearing capacity		r shear load	d, steel	failur	е							
without lever arm	า											
Characteristic bearing capacity V _{Rk.s}		Property	5.8		9,2	14,5	21,1	39,2	62,0			
	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0				
with screw	▼ rk,s	Property	A4		12,8	20,3	29,5	54,8	86,0			
		class 70	С		12,8	20,3	29,5	54,8	86,0			
Ductility factor acc 1992-4-5:2009 Se			k_2	[-]			1,0					
with lever arm												
Oh ava ata via tia		Property	5.8		20	39	68	173	337			
Characteristic bending moment	M ⁰ pu	class	8.8	[Nm]	30	60	105	266	519			
with screw	RK,S	Property	A4	[[[]]]]	26	52	92	232	454			
		class 70	С		26	52	92	232	454			
Partial safety fac	tors ¹⁾											
		Property	5.8				1,25					
Partial safety	V	class	8.8	[-]			1,25					
factor	γMs,∨	Property	A4				1,56					
		class 70	С				1,56					

fischer RM II

tensile load 1992-4-5:20 ssive streng C25/30 C30/37 C35/45	009 S k _{ucr} k _{cr}	[-]	6.2.3.1								
sive streng C25/30 C30/37	k _{ucr} k _{cr}	[-]	6.2.3.1								
sive streng C25/30 C30/37	k_{cr}										
sive streng C25/30 C30/37	k_{cr}				10),1					
C25/30 C30/37	gth of	concr			7	,2					
C30/37			ete > C20/	25							
					1,	02					
C35/45			1,04								
			1,07								
C40/50	$\Psi_{\textbf{c}}$	[-]	1,08								
C45/55			1,09								
C50/60											
		I – – – – – – – – – – – – – – – – – – –									
/ h _{ef} ≥ 2.0					1.0	h _{ef}					
	Ccr.sn				-						
	0.,00	[[mm]									
	S _{cr sn}										
		92-4-5	:2009 Sec	tion 6.2.3.2							
	C _{cr N}				1,5	h _{ef}					
		[mm]									
	01,11										
<u> </u>	Va										
	=	[-]			1	,0					
	γinst										
.cc. to	k (3)	[[-]]			2	.0					
	(0)					, -					
		[mm]			h_{ef}	$= h_{o}$					
		[]									
			M8	M10	M12	M16	M20	M24			
	d		M8 8	M10 10	M12 12	M16 16	M20 20	M24 24			
	d d _{nom}	[mm]									
	C50/60 / $h_{ef} \ge 2,0$ / $h_{ef} \ge 1,3$ / $h_{ef} \le 1,3$ cc. to CEN/ shear load rs	$\frac{C50/60}{\frac{1}{h_{ef}} \ge 2,0}{\frac{1}{h_{ef}} \le 1,3} c_{cr,sp}}$ $\frac{c_{cr,sp}}{c_{cr,sp}}$ $\frac{c_{cr,N}}{c_{cr,N}}$ $\frac{c_{cr,N}}{s_{cr,N}}$ shear load $\frac{\gamma_2}{=}$ $\frac{\gamma_2}{\gamma_{inst}}$	$\frac{C50/60}{\frac{h_{ef} \geq 2,0}{h_{ef} \geq 1,3}} c_{cr,sp} \text{ [mm]}$ $\frac{s_{cr,sp}}{s_{cr,sp}} c. \text{ to CEN/TS 1992-4-5}$ $\frac{C_{cr,N}}{s_{cr,N}} \text{ [mm]}$ $\frac{shear load}{rs}$ $\frac{\gamma_2}{\gamma_{inst}} \text{ [-]}$	C50/60 $/ h_{ef} \ge 2,0$ $/ h_{ef} \ge 1,3$ $c_{cr,sp}$ [mm] $S_{cr,sp}$ [mm]cc. to CEN/TS 1992-4-5:2009 Sec $C_{cr,N}$ $S_{cr,N}$ shear loadrs γ_2 $=$ γ_{inst} [-] γ_{inst}	C50/60 $/ h_{ef} \ge 2,0$ $/ h_{ef} \ge 1,3$ $c_{cr,sp}$ [mm] $s_{cr,sp}$ [mm]sc. to CEN/TS 1992-4-5:2009 Section 6.2.3.2 $c_{cr,N}$ $s_{cr,N}$ shear loadrs $\frac{\gamma_2}{\gamma_{inst}}$ [-] γ_{inst}	C50/60 1, / $h_{ef} \ge 2,0$ 1,0 / $h_{ef} \ge 1,3$ $c_{cr,sp}$ / $h_{ef} \le 1,3$ [mm] Scr.sp 2,20 Scr.sp 2,20 cc. to CEN/TS 1992-4-5:2009 Section 6.2.3.2 Cor. N [mm] Scr.N 1,5 Scr.N [mm] 2,00 2,00 shear load 1,5 γ_2 [-] γ_{inst} [-] γ_{inst} 1	C50/60 1,10 $/ h_{ef} \ge 2,0$ 1,0 h_{ef} $/ h_{ef} \ge 1,3$ $c_{cr,sp}$ $/ h_{ef} \le 1,3$ $c_{cr,sp}$ $s_{cr,sp}$ rs $cc. to CEN/TS 1992-4-5:2009 Section 6.2.3.2$ $C_{cr,N}$ rs γ_2 rs γ_2 $[-]$ γ_{inst} rs	C50/60 1,10 / $h_{ef} \ge 2,0$ 1,0 h_{ef} / $h_{ef} \ge 1,3$ $c_{cr,sp}$ / $h_{ef} \le 1,3$ $c_{cr,sp}$ scr.sp 2,26 h_{ef} 2,26 h_{ef} 2 $c_{cr,sp}$ cc. to CEN/TS 1992-4-5:2009 Section 6.2.3.2 $c_{cr,N}$ [mm] $s_{cr,N}$ $nm]$ $s_{cr,N}$ $nm]$ $shear load$ rs $\frac{\gamma_2}{\gamma_{inst}}$ $[-]$ γ_{inst} $1,0$			

Table (C4.1: Characte in hamme							s RG M	
Anchor	rod RG M			M8	M10	M12	M16	M20	M24
Combine	ed pullout and concr	ete cone	failure			•	-		-
Calculati	on diameter	d	[mm]	8	10	12	16	20	24
	ed concrete								
	eristic bond resistan								
Hammer	-drilling with standard	drill bit or	<u>hollow dr</u>	<u>ill bit (dry a</u>	nd wet cor	<u>ncrete)</u>			
Tem-	l: 40 °C / 24 °C	_		12,5	12,5	12,5	12,5	12,5	12,5
perature range	II: 80 °C / 50 °C	$\tau_{\rm Rk,ucr}$	[N/mm ²]	12,0	12,0	12,0	12,0	12,0	12,0
lange	III: 120 °C / 72 °C			10,5	10,5	10,5	10,5	10,5	10,5
Hammer	-drilling with standard	drill bit or	hollow dr	<u>ill bit (flood</u>	<u>ed hole)</u>				
Tem-	l: 40 °C / 24 °C					12,5	12,5	12,5	12,5
perature	II: 80 °C / 50 °C	$\tau_{Rk,ucr}$	[N/mm ²]			12,0	12,0	12,0	12,0
range	III: 120 °C / 72 °C					10,5	10,5	10,5	10,5
	ion safety factors								
	wet concrete	$-\gamma_2 = \gamma_{inst}$	[-]			1	,2		
Flooded		12 11130	.,					1,4	
	concrete								
	eristic bond resistan								
Hammer	-drilling with standard	arili dit or	nollow ar	<u>iii dit (ary a</u>					
Tem-	l: 40 °C / 24 °C	τ _{Rk,cr} [N/mm ²]		4,5	4,5	4,5	4,5	4,5	
perature range			[N/mm ²]		4,0	4,0	4,0	4,0	4,0
	III: 120 °C / 72 °C				3,5	3,5	3,5	3,5	3,5
Hammer	-drilling with standard	drill bit or	<u>hollow dr</u>	<u>ill bit (flood</u>	<u>ed hole)</u>	1			
Tem-	l: 40 °C / 24 °C	-				4,5	4,5	4,5	4,5
perature range	II: 80 °C / 50 °C	$\tau_{Rk,cr}$	[N/mm ²]			4,0	4,0	4,0	4,0
	III: 120 °C / 72 °C					3,5	3,5	3,5	3,5
	ion safety factors		1						
	wet concrete	$-\gamma_2 = \gamma_{inst}$	[-]				1,2		
Flooded	hole							1,4	
	r RM II							A	
Perforr	nances							Annex	(C) 4

Characteristic values for static or quasi-static action under tensile load for fischer anchor rod RG M (uncracked or cracked concrete)

	aded anchors R	g MI		M8	M10	M12	M16	M20	
Calculation d	ullout and conci	ete cone	failure		<u>I</u>				
	ameter	d	[mm]	12	16	18	22	28	
Uncracked c	oncrete								
Characterist	ic bond resistan	ce in uno	cracked co	oncrete C20)/25				
Hammer-drilli	<u>ng with standard</u>	drill bit or	hollow dri	ll bit (dry an	d wet concret	<u>e)</u>			
Tem- l:	40 °C / 24 °C			11	11	11	11	11	
perature II:	80 °C / 50 °C	τ _{Rk,ucr}	[N/mm ²]	10,5	10,5	10,5	10,5	10,5	
range III:	120 °C / 72 °C	_		9,5	9,5	9,5	9,5	9,5	
Hammer-drilli	<u>ng with standard</u>	drill bit or	hollow dri	ll bit (floode	d hole)				
I: Tem-	40 °C / 24 °C			11	11		11		
perature II:	80 °C / 50 °C	τ _{Rk,ucr}	[N/mm ²]	10,5	10,5		10,5		
range III:	120 °C / 72 °C	_	[9,5	9,5		9,5		
nstallation s	afety factors								
Dry and wet o	concrete		[-]			1,2			
Flooded hole		$-\gamma_2 = \gamma_{inst}$	[_]	1	,4		1,4		
Cracked con									
	ic bond resistan								
Hammer-drilli	ng with standard	drill bit or	<u>hollow dri</u>	ll bit (dry an	d wet concret	<u>e)</u>	1	1	
I: Tem-	40 °C / 24 °C	- τ _{Rk,cr}	- τ _{Rk,cr}		4,5	4,5	4,5	4,5	4,5
	80 °C / 50 °C			$\tau_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	4,0
	120 °C / 72 °C			3,5	3,5	3,5	3,5	3,5	
Hammer-drilli	ng with standard	drill bit or	hollow dri	II bit (floode	<u>d hole)</u>				
1:	40 °C / 24 °C			4,5	4,5		4,5		
Tom	80 °C / 50 °C	- τ _{Rk,cr}	[N/mm ²]	4,0	4,0		4,0		
		-	[N/mm ⁻]	3,5	3,5		3,5		
perature II: range	120 °C / 72 °C						1		
range II:	120 °C / 72 °C				1				
range II: III:	afety factors	$-\gamma_2 = \gamma_{inst}$	[-]			1,2		· 	

Anchor I	od RG M	M8	M10	M12	M16	M20	M24
Displace	ment-Factors	for tensile loa	d ¹⁾				
Jncrack	ed or cracked	concrete; Tem	perature rang	je I, II			
$\delta_{N0-Factor}$	[mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12
δ _{N∞-Factor}	[mm/(wmm-)]	0,13	0,14	0,15	0,17	0,17	0,18
Displace	ment-Factors	for shear load	2)	•	•		
Uncrack	ed or cracked	concrete; Tem	perature rang	je I, II			
$\delta_{V0-Factor}$	[mama/[c]]]	0,18	0,15	0,12	0,09	0,07	0,06
Sv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09
¹⁾ Calcu	lation of effecti	ve displacemer	nt:	²⁾ Calculati	on of effective o	lisplacement:	
$\delta_{N0} =$	$\delta_{\text{N0-Factor}}\cdot\tau_{\text{Ed}}$			$\delta_{V0} = \delta_{V0}$	-Factor $\cdot V_{Ed}$		

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \cdot \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed} : Design value of the applied shear force)

Table C6.2: Displacements for fischer internal threaded anchors RG MI

Internal threaded anchor RG MI		M8	M10	M12	M16	M20
Displace	ment-Factors	for tensile load ¹⁾	_	· ·		
Uncrack	ed or cracked	concrete; Tempe	rature range I, II			
$\delta_{N0\text{-Factor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19
S _{N∞-Factor}		0,13	0,15	0,15	0,17	0,19
Displace	ment-Factors	for shear load ²⁾				
Uncrack	ed or cracked	concrete; Tempe	rature range I, II			
$\delta_{V0-Factor}$	[mm/kN]	0,12	0,09	0,08	0,07	0,05
$\delta_{V^{\infty}\operatorname{-}Factor}$		0,18	0,14	0,12	0,10	0,08
¹⁾ Calculation of effective displacement: ²⁾ Calculation of effective disp						nent:
$\delta_{N0} = \delta_{N0-Factor} \cdot \tau_{Ed} \qquad \qquad$						
$\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed} \qquad \qquad \delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$						
$(\tau_{Ed}$: Design value of the applied tensile stress)				(V _{Ed} : Design value of the applied shear force)		
fischer	RMI					

Displacements for anchor rods RGM and fischer internal threaded anchors RG MI