

#### **DECLARATION OF PERFORMANCE**



#### No. 0011 – EN

1. Unique identification code of the product-type: fischer Superbond

2. Intended use/es:

| Product                                   | Intended use/es                                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------|
| Metal anchors for use in concrete (heavy- | For fixing and/or supporting concrete structural elements or heavy units such as |
| duty type)                                | cladding and suspended ceilings, see appendix, especially Annexes B 1 to B 12    |

#### 3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

#### 6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-12/0258; 2015-03-23

Technical Assessment Body: DIBt

#### Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

#### Mechanical resistance and stability (BWR 1)

| Essential characteristic                                               | Performance                                   |
|------------------------------------------------------------------------|-----------------------------------------------|
| Characteristic values under static and quasi-static action for design  | See appendix, especially Annexes C 1 to C 10  |
| according to TR 029 or CEN/TS 1992-4:2009, Displacements               |                                               |
| Characteristic resistance for seismic performance categories C1 and C2 | See appendix, especially Annexes C 11 to C 13 |
| for design according to Technical Report TR 045, Displacements         |                                               |

#### Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                  |
|--------------------------|----------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for Class A1 |
| Resistance to fire       | No performance determined (NPD)              |

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

1.V. A. Dun

i.V. W. Malal

Tumlingen, 2015-03-30

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

## Appendix 1/30

#### **Specific Part**

#### 1 Technical description of the product

The fischer injection system FIS SB is a bonded anchor consisting of a cartridge with injection mortar fischer FIS SB, FIS SB Low Speed or FIS SB High Speed or a mortar capsule fischer RSB and a steel element. The steel element consist of

- a threaded rod with washer and hexagon nut of sizes M8 to M30 or
- internal threaded anchor RG MI of sizes M8 to M20 or
- a deformed reinforcing bar of sizes  $\phi = 8$  to 32 mm or
- a fischer rebar anchor FRA of sizes M12 to M24

The steel element is placed into a drilled hole filled with injection mortar or a mortar capsule RSB and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                                                          | Performance            |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements    | See Annex C 1 to C 10  |
| Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements | See Annex C 11 to C 13 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                     |
|--------------------------|-------------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire       | No performance determined (NPD)                 |

#### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

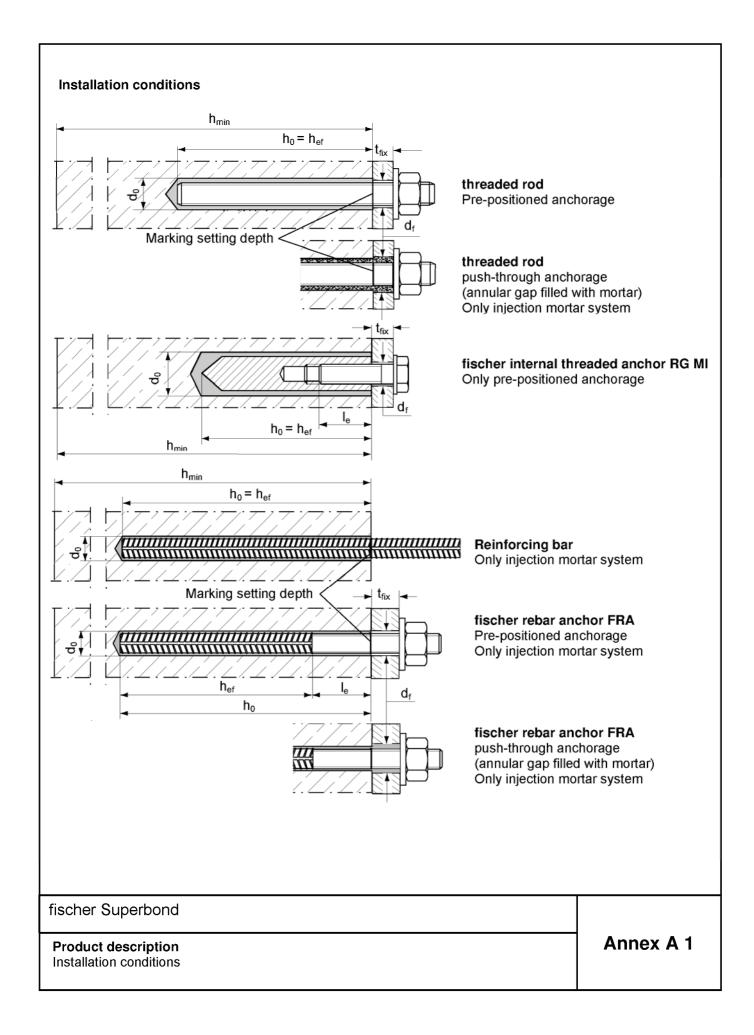
#### 3.4 Safety in use (BWR 4)

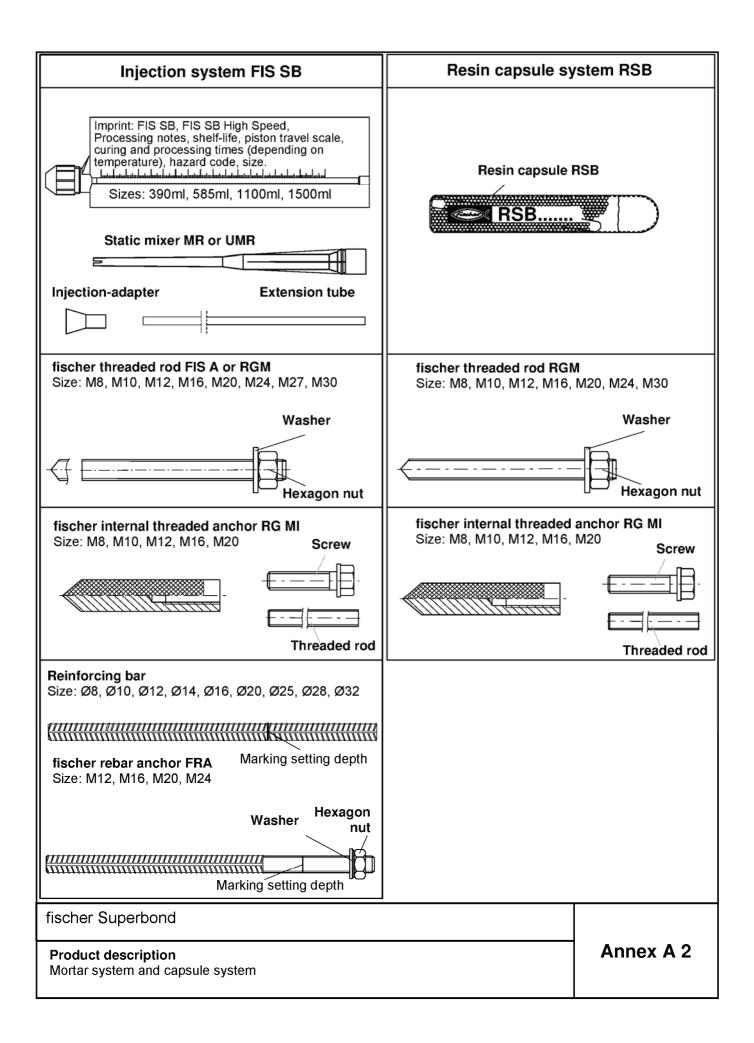
The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- **3.6 Energy economy and heat retention (BWR 6)** Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

#### 3.8 General aspects


The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.


# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                             | Intended use                                                                                                              | Level or class | System |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete (heavy-duty type) | For fixing and/or supporting<br>concrete structural elements or<br>heavy units such as cladding and<br>suspended ceilings | _              | 1      |

# Appendix 3/30





|                                                                       |                                                                                                                                                                                                                                          | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /lortar cartridge                                                     |                                                                                                                                                                                                                                          | Mortar, hardener, filler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                       | Steel, zinc plated                                                                                                                                                                                                                       | Stainless steel A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | High corrosion-<br>resistant steel C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| hreaded rod                                                           | Property class 5.8 or 8.8;<br>EN ISO 898-1: 2013<br>zinc plated $\geq$ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004<br>$f_{uk} \leq$ 1000 N/mm <sup>2</sup><br>A <sub>5</sub> > 12% fracture<br>elongation | Property class 50, 70<br>or 80<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>1.4062<br>EN 10088-1:2014<br>$f_{uk} \le 1000 \text{ N/mm}^2$<br>$A_5 > 12\% \text{ fracture}$<br>elongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Property class 50 or 80<br>EN ISO 3506:2009<br>or property class 70<br>with $f_{yk}$ = 560 N/mm <sup>2</sup><br>1.4565; 1.4529<br>EN 10088-1:2014<br>$f_{uk} \le 1000$ N/mm <sup>2</sup><br>A <sub>5</sub> > 12% fracture<br>elongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Washer<br>SO 7089:2000                                                | zinc plated ≥ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004                                                                                                                                                 | 1.4401; 1.4404;<br>1.4578;1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4565;1.4529<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lexagon nut                                                           | Property class 5 or 8;<br>EN ISO 898-2:2013<br>zinc plated ≥ 5µm,<br>ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004                                                                                                     | Property class 50, 70<br>or 80<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4571; 1.4439;<br>1.4362<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Property class 50, 70 o<br>80<br>EN ISO 3506:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ischer internal threaded<br>inchor RG MI                              | Property class 5.8 or 8.8;<br>ISO 898-1:2013<br>zinc plated ≥ 5µm,<br>ISO 4042:1999 A2K                                                                                                                                                  | Property class 70<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Property class 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Screw or threaded rod for<br>ischer internal threaded<br>inchor RG MI | Property class 5.8 or 8.8;<br>EN ISO 898-1:2013<br>zinc plated ≥ 5µm,<br>ISO 4042:1999 A2K                                                                                                                                               | Property class 70<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Property class 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reinforcing bar<br>EN 1992-1-1:2004 and<br>AC:2010, Annex C           | f <sub>yk</sub> and k according to NDP of                                                                                                                                                                                                | ss B or C with<br>or NCL of EN 1992-1-1/<br>B 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ischer rebar anchor FRA                                               | class B or C with f <sub>yk</sub> and k a                                                                                                                                                                                                | ccording to<br>1/NA:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Threaded part:<br>roperty class 70<br>ISO 3506:2009<br>1.4565; 1.4529<br>N 10088-1:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                       | Vasher<br>SO 7089:2000<br>lexagon nut<br>scher internal threaded<br>nchor RG MI<br>crew or threaded rod for<br>scher internal threaded<br>nchor RG MI<br>crew or threaded rod for<br>scher internal threaded<br>nchor RG MI              | hreaded rodProperty class 5.8 or 8.8;<br>EN ISO 898-1: 2013<br>zinc plated $\geq$ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004<br>f <sub>uk</sub> $\leq$ 1000 N/mm²<br>A5 > 12% fracture<br>elongationVasher<br>SO 7089:2000zinc plated $\geq$ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004Vasher<br>SO 7089:2000zinc plated $\geq$ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004Vasher<br>SO 7089:2000Property class 5 or 8;<br>EN ISO 10684:2004Vasher<br>SO 10684:2004Property class 5 8 or 8.8;<br>ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004Receive or threaded<br>nchor RG MIProperty class 5.8 or 8.8;<br>ISO 898-1:2013<br>zinc plated $\geq$ 5µm,<br>ISO 4042:1999 A2KScher internal threaded<br>nchor RG MIProperty class 5.8 or 8.8;<br>ISO 898-1:2013<br>zinc plated $\geq$ 5µm,<br>ISO 4042:1999 A2KScher internal threaded<br>nchor RG MIProperty class 5.8 or 8.8;<br>ISO 898-1:2013<br>zinc plated $\geq$ 5µm,<br>ISO 4042:1999 A2KReinforcing bar<br>N 1992-1-1:2004 and<br>G:2010, Annex CBars and de-coiled rods cla<br>f <sub>yk</sub> and k according to NDP of<br>f <sub>uk</sub> = f <sub>tk</sub> = k·f <sub>yk</sub> (k see Annex<br>NDP or NCL of EN 1992-1- | hreaded rodProperty class 5.8 or 8.8;<br>EN ISO 898-1: 2013<br>zinc plated $\geq 5\mu$ m,<br>EN ISO 4042:1999 A2K<br>or hot-dig galvanised<br>EN ISO 10684:2004<br>fwt $\leq 1000$ N/mm²Property class 5.0 r.8.8;<br>EN ISO 3006:2009<br>1.4401; 1.4404;<br>1.44571; 1.4571;<br>1.4402;<br>As > 12% fracture<br>elongationProperty class 5.2 r.8.8;<br>EN 10088-1:2014<br>fwt $\leq 1000$ N/mm²<br>As > 12% fracture<br>elongationVasher<br>SO 7089:2000zinc plated $\geq 5\mu$ m,<br>EN ISO 4042:1999 A2K<br>or hot-dig galvanised<br>EN ISO 10684:20041.44578; 1.4571;<br>1.4404;<br>1.4404; 1.4404;<br>SO 7089:2000Vasher<br>SO 7089:2000zinc plated $\geq 5\mu$ m,<br>EN ISO 4042:1999 A2K<br>or hot-dig galvanised<br>EN ISO 2088-2:2013<br>zinc plated $\geq 5\mu$ m,<br>ISO 4042:1999 A2K<br>or hot-dig galvanised<br>EN ISO 10684:2004Property class 5.0 r.0<br>or 80Vasher<br>So 7089:2000Property class 5.8 or 8.8;<br>ISO 4042:1999 A2K<br>or hot-dig galvanised<br>EN ISO 10684:2004Property class 5.0 r.0<br>or 80Ex ISO 898-1:2013<br>zinc plated $\geq 5\mu$ m,<br>ISO 4042:1999 A2K<br>or hot-dig galvanised<br>EN ISO 3506:2009Property class 70<br>EN ISO 3506:2009Scher internal threaded<br>nchor RG MIProperty class 5.8 or 8.8;<br>ISO 4042:1999 A2K<br>ISO 4042:1999 A2KProperty class 70<br>EN ISO 3506:2009Froperty class 5.8 or 8.8;<br>EN ISO 3506:2009<br>zinc plated $\geq 5\mu$ m,<br>ISO 4042:1999 A2K<br>ISO 4042:1999 A2KProperty class 70<br>EN ISO 3506:2009Froperty class 5.8 or 8.8;<br>EN ISO 3506:2009<br>zinc plated $\geq 5\mu$ m,<br>ISO 4042:1999 A2KProperty class 70<br>EN ISO 3506:2009Fils E vistor Add 2 Superty class 5.8 or 8.8;<br>EN ISO 3506:2009<br>zinc plated $\geq 5\mu$ m,<br>ISO 4042:1999 A2KProperty class 70<br>EN ISO 3506:2009F |

Materials

| Specifications of <b>Table B1:</b> Overv                                        |                             |                                          | ,               | erformance cate                     | gories           |                                |              |                                 |  |
|---------------------------------------------------------------------------------|-----------------------------|------------------------------------------|-----------------|-------------------------------------|------------------|--------------------------------|--------------|---------------------------------|--|
| Anchorages subject to                                                           |                             |                                          |                 | Mortar system                       | FIS SB           | with                           |              |                                 |  |
|                                                                                 | T                           | nreaded rod                              |                 | r internal threaded<br>inchor RG MI |                  | orcing bar                     |              | her rebar<br>chor FRA           |  |
| Hammer drilling                                                                 |                             |                                          |                 | all sizes                           | 5<br>S           |                                | Citomania    |                                 |  |
| Diamond drilling                                                                |                             |                                          |                 | Not permit                          | ted              |                                |              |                                 |  |
| t<br>Static and crack<br>quasi-static <u>concre</u><br>load, in crack<br>concre | ete all<br>size             | Tables:<br>C1; C3; C5;<br>C11; C12       | all<br>sizes    | Tables:<br>C3; C6; C13; C14         | all sizes        | Tables:<br>C7; C9;<br>C15; C16 | all<br>sizes | Tables:<br>C8; C10;<br>C17; C18 |  |
| Seismic<br>performance<br>category ———                                          | C1 –<br>M30                 | Table<br>C19                             |                 |                                     | Ø 8<br>-<br>Ø 32 | Table C20                      |              |                                 |  |
| (only<br>hammer                                                                 | M12<br>M16<br>C2 M20<br>M24 | , Table<br>, C21                         |                 |                                     |                  |                                |              |                                 |  |
| Use Dry or v<br>concre<br>category                                              | ete                         | all sizes                                |                 |                                     |                  |                                |              |                                 |  |
| Flooded he                                                                      | ole                         |                                          |                 | Not permit                          | tted             |                                |              |                                 |  |
| Anchorages subject to                                                           |                             |                                          |                 | Capsule syste                       | m BSB            | with                           |              |                                 |  |
|                                                                                 |                             | nreaded rod<br>RGM only                  | 1               | r internal threaded<br>inchor RG MI | Reinfo           | orcing bar                     |              |                                 |  |
| Hammer drilling                                                                 |                             | all sizes                                | Pern            | nitted ≥ Ø 18 mm                    | Notr             | permitted                      | Not          | permitted                       |  |
| Diamond drilling                                                                | RG                          | M M16 to M30                             |                 |                                     |                  | permitted                      |              |                                 |  |
| •                                                                               | ete all<br>size:            | Tables:<br>C1;C2; C3;<br>C5; C11;<br>C12 | M10<br>-<br>M20 | M10 Tables:<br>- C3; C4; C6; C13;   |                  |                                |              |                                 |  |
| category                                                                        | C1 –<br>M30                 | Table<br>C19                             |                 |                                     |                  |                                |              |                                 |  |
| (only<br>hammer<br>drilling)                                                    | 2                           |                                          |                 |                                     |                  |                                |              |                                 |  |
| Use Dry or v<br>category                                                        | te R                        | GM all sizes                             |                 | All sizes                           |                  |                                |              |                                 |  |
| Flooded he                                                                      | ole  R                      | GM all sizes                             |                 | All sizes                           |                  |                                |              |                                 |  |
| fischer Superbond                                                               |                             |                                          |                 |                                     |                  |                                | Ann          | ex B 1                          |  |
| Specifications (part 1                                                          | )                           |                                          |                 |                                     |                  |                                |              |                                 |  |

| Specification            | ns of intended use (p | part 2)         |                                                                              |  |  |  |
|--------------------------|-----------------------|-----------------|------------------------------------------------------------------------------|--|--|--|
| Installation temperature |                       | +5°C to +40°C   |                                                                              |  |  |  |
|                          | Temperature range I   | -40°C to +40°C  | (max. long term temperature +24°C and max.<br>short term temperature +40°C)  |  |  |  |
| In-service               | Temperature range II  | -40°C to +80°C  | (max. long term temperature +50°C and max.<br>short term temperature +80°C)  |  |  |  |
| temperature              | Temperature range III | -40°C to +120°C | (max. long term temperature +72°C and max. short term temperature +120°C)    |  |  |  |
| -                        | Temperature range IV  | -40°C to +150°C | (max. long term temperature +90°C and max.<br>short term temperature +150°C) |  |  |  |

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist
  - (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition or in other particular aggressive conditions (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

#### Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with: TR 029
- Anchorages under seismic actions have to be designed in accordance with: TR 045

#### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · In case of aborted hole: The hole shall be filled with mortar
- Marking and keeping the effective anchorage depth

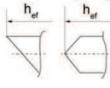
# Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according to Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

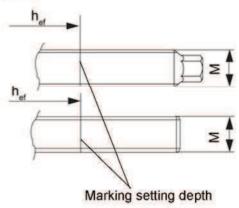
#### fischer Superbond

Intended Use Specifications (part 2)

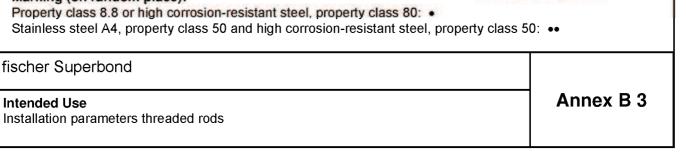
| Size                              |                                                               |                                      |                                |      | M8                | M10            | M12  | M16 | M20 | M24                  | M27 | M30 |
|-----------------------------------|---------------------------------------------------------------|--------------------------------------|--------------------------------|------|-------------------|----------------|------|-----|-----|----------------------|-----|-----|
| Width acr                         | oss flat                                                      |                                      | SW                             | [mm] | 13                | 17             | 19   | 24  | 30  | 36                   | 41  | 46  |
|                                   | Nominal drill b                                               | it diameter                          | d <sub>0</sub>                 | [mm] | 10                | 12             | 14   | 18  | 24  | 28                   | 30  | 35  |
|                                   | Depth of drill hole                                           |                                      | h <sub>0</sub>                 | [mm] |                   | $h_0 = h_{ef}$ |      |     |     |                      |     |     |
|                                   | Effective anch                                                | orage _                              | $\mathbf{h}_{\mathrm{ef,min}}$ | [mm] | 60                | 60             | 70   | 80  | 90  | 96                   | 108 | 120 |
| Injection                         | depth                                                         |                                      | h <sub>ef,max</sub>            | [mm] | 160               | 200            | 240  | 320 | 400 | 480                  | 540 | 600 |
| mortar<br>FIS SB                  | Diameter of clearance                                         | pre-<br>positioned<br>anchorage      | ≤ d <sub>f</sub>               | [mm] | 9                 | 12             | 14   | 18  | 22  | 26                   | 30  | 33  |
| hole in the fixture <sup>1)</sup> | push<br>through<br>anchorage                                  | ≤ d <sub>f</sub>                     | [mm]                           | 11   | 14                | 16             | 20   | 26  | 30  | 33                   | 40  |     |
|                                   | Nominal drill b                                               |                                      | d <sub>0</sub>                 | [mm] | 10                | 12             | 14   | 18  | 25  | 28                   |     | 35  |
|                                   | Depth of drill h                                              | ole                                  | h <sub>0</sub>                 | [mm] | $h_0 = h_{ef}$    |                |      |     |     |                      |     |     |
| Resin                             | Effective                                                     | _                                    | h <sub>ef,1</sub>              | [mm] |                   | 75             | 75   | 95  |     |                      |     |     |
| capsule                           | anchorage                                                     | _                                    | h <sub>ef,2</sub>              | [mm] | 80                | 90             | 110  | 125 | 170 | 210                  |     | 280 |
| RSB                               | depth                                                         |                                      | h <sub>ef,3</sub>              | [mm] |                   | 150            | 150  | 190 | 210 |                      |     |     |
|                                   | Diameter of<br>clearance hole<br>in the fixture <sup>1)</sup> | Only pre-<br>positioned<br>anchorage |                                | [mm] | 9                 | 12             | 14   | 18  | 22  | 26                   |     | 33  |
| Minimum<br>minimum<br>distance    | spacing and<br>edge                                           | s <sub>min</sub> = c <sub>mi</sub>   | n                              | [mm] | 40                | 45             | 55   | 65  | 85  | 105                  | 120 | 140 |
| Minimum<br>concrete               | thickness of<br>member                                        |                                      | h <sub>min</sub>               | [mm] | h <sub>ef</sub> · | + 30 (≥        | 100) |     | ł   | n <sub>ef</sub> + 2d | 0   |     |
| Maximum                           | i torque momen                                                | n I                                  | nax T <sub>inst</sub>          | [Nm] | 10                | 20             | 40   | 60  | 120 | 150                  | 200 | 300 |


<sup>1)</sup> For larger clearance holes in the fixture see TR 029, 4.2.2.1

#### fischer threaded rod:


Alternative point geometry threaded rod FIS A

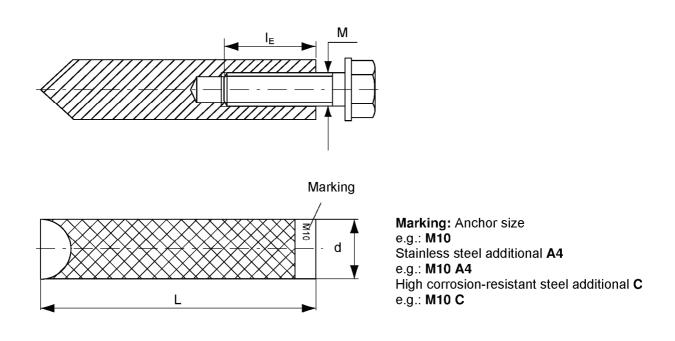



Alternative point geometry threaded rod RGM

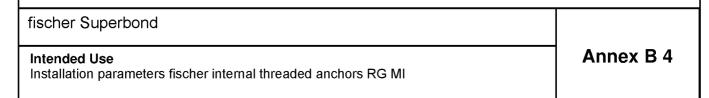


Alternative head geometry threaded rod FIS A and RGM




# Marking (on random place):




| Table B3: Installatio                                            | n parame              | eters fis | scher intern | al threaded | anchors RC     | 9 MI |     |
|------------------------------------------------------------------|-----------------------|-----------|--------------|-------------|----------------|------|-----|
| Size                                                             |                       |           | M8           | M10         | M12            | M16  | M20 |
| Diameter of anchor                                               | d <sub>H</sub>        | [mm]      | 12           | 16          | 18             | 22   | 28  |
| Nominal drill bit diameter                                       | do                    | [mm]      | 14           | 18          | 20             | 24   | 32  |
| Drill hole depth                                                 | h₀                    | [mm]      |              | _           | $h_0 = h_{ef}$ | _    |     |
| Effective anchorage depth<br>(h <sub>ef</sub> = L <sub>H</sub> ) | h <sub>ef</sub>       | [mm]      | 90           | 90          | 125            | 160  | 200 |
| Maximum torque<br>moment                                         | max T <sub>inst</sub> | [Nm]      | 10           | 20          | 40             | 80   | 120 |
| Minimum spacing                                                  | S <sub>min</sub>      | [mm]      | 55           | 65          | 75             | 95   | 125 |
| Minimum edge<br>distance                                         | C <sub>min</sub>      | [mm]      | 55           | 65          | 75             | 95   | 125 |
| Diameter of clearance hole in the fixture <sup>1)</sup>          | $d_f$                 | [mm]      | 9            | 12          | 14             | 18   | 22  |
| Minimum thickness of<br>concrete member                          | h <sub>min</sub>      | [mm]      | 120          | 125         | 165            | 205  | 260 |
| Maximum screw-in<br>depth                                        | I <sub>E,max</sub>    | [mm]      | 18           | 23          | 26             | 35   | 45  |
| Minimum screw-in depth                                           | $I_{E,min}$           | [mm]      | 8            | 10          | 12             | 16   | 20  |

 $^{1)}$  For larger clearance holes in the fixture see TR 029, 4.2.2.1

# fischer internal threaded anchor RG MI



Fastening screw or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Table A1



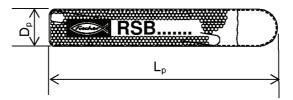
| Nominal bar size                                                                                                                                                                                                             |                      | Ø                         | <b>8</b> <sup>1)</sup>              | <b>10</b> <sup>1)</sup>    | 12 <sup>1</sup>      | )     | 14          | 16              | 20                   | 25             | 28    | 32  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|-------------------------------------|----------------------------|----------------------|-------|-------------|-----------------|----------------------|----------------|-------|-----|
| Nominal drill bit diameter                                                                                                                                                                                                   | do                   | [mm]                      | (10)12                              | (12)14                     | (14)                 | 16    | 18          | 20              | 25                   | 30             | 35    | 40  |
| Drill hole depth                                                                                                                                                                                                             | h <sub>0</sub>       | [mm]                      |                                     |                            |                      |       | $h_0 = h_e$ | ef              |                      | I              |       |     |
| Effective                                                                                                                                                                                                                    | h <sub>ef,min</sub>  | [mm]                      | 60                                  | 60                         | 70                   |       | 75          | 80              | 90                   | 100            | 112   | 128 |
| inchorage depth                                                                                                                                                                                                              | h <sub>ef,max</sub>  | [mm]                      | 160                                 | 200                        | 240                  |       | 280         | 320             | 400                  | 500            | 560   | 64  |
| linimum spacing                                                                                                                                                                                                              | S <sub>min</sub>     | [mm]                      | 40                                  | 45                         | 55                   |       | 60          | 65              | 85                   | 110            | 130   | 16  |
| Ainimum edge distance                                                                                                                                                                                                        | C <sub>min</sub>     | [mm]                      | 40                                  | 45                         | 55                   |       | 60          | 65              | 85                   | 110            | 130   | 16  |
| linimum thickness of<br>oncrete member                                                                                                                                                                                       | h <sub>min</sub>     | [mm]                      | h <sub>ef</sub>                     | + 30 ≥ 10                  | 0                    |       |             |                 | h <sub>ef</sub> + 20 | d <sub>o</sub> |       |     |
| Properties of reinforcem                                                                                                                                                                                                     | nent: refe           | er to EN                  | 1992-1-                             |                            | g settin<br>C, Table |       |             |                 |                      |                | mm    | 4   |
| Product form                                                                                                                                                                                                                 |                      |                           |                                     |                            | Non-z                | inc-p | lated       | bars a          | nd de                | -coile         | d rod | ]   |
| Class                                                                                                                                                                                                                        |                      |                           | forf                                |                            |                      | В     |             | 0 to 6          | 00                   | С              |       |     |
| Characteristic yield streng                                                                                                                                                                                                  |                      |                           | 1 <sub>yk</sub> UI 1 <sub>0,2</sub> | <sub>2k</sub> [MPa]        |                      |       |             |                 |                      | ≥ 1.15         |       |     |
|                                                                                                                                                                                                                              |                      |                           |                                     |                            |                      | > 1   |             |                 |                      | ,              |       |     |
|                                                                                                                                                                                                                              | <b>J</b>             |                           |                                     |                            |                      | ≥1,   |             |                 |                      | < 1,35         |       |     |
| Characteristic strain at ma                                                                                                                                                                                                  | <b>J</b>             | orce                      |                                     | ε <sub>uk</sub> [%]        |                      | ≥ 5   | ,0          | Rehe            |                      | ≥ 7,5          |       |     |
| Characteristic strain at ma<br>Bentability                                                                                                                                                                                   | <b>J</b>             | orce                      |                                     |                            |                      | ≥ 5   | ,0          | / Rebe          |                      | ≥ 7,5          |       |     |
| Characteristic strain at ma<br>Bentability<br>Maximum deviation from                                                                                                                                                         | <b>J</b>             | Nomir                     | nal bar                             | ε <sub>uk</sub> [%]<br>≤ 8 |                      | ≥ 5   | ,0          | ' Rebe<br>± 6,0 |                      | ≥ 7,5          |       |     |
| Characteristic strain at ma<br>Bentability<br>Maximum deviation from<br>nominal mass (individual                                                                                                                             | <b>J</b>             |                           |                                     |                            |                      | ≥ 5   | ,0          |                 |                      | ≥ 7,5          |       |     |
| Characteristic strain at ma<br>Bentability<br>Maximum deviation from<br>nominal mass (individual<br>bar) [%]<br>Bond:                                                                                                        | aximum fo            | Nomir<br>size [r<br>Nomir | nm]<br>nal bar                      | ≤ 8                        |                      | ≥ 5   | ,0          | ±6,0            |                      | ≥ 7,5          |       |     |
| Minimum value of k = (f <sub>t</sub> / f<br>Characteristic strain at ma<br>Bentability<br>Maximum deviation from<br>nominal mass (individual<br>bar) [%]<br>Bond:<br>Minimum relative rib area,<br>(determination acc. to EN | , f <sub>R,min</sub> | Nomir<br>size [r          | nm]<br>nal bar                      | ≤ 8<br>> 8                 |                      | ≥ 5   | ,0          | ± 6,0<br>± 4,5  | nd tes               | ≥ 7,5          |       |     |

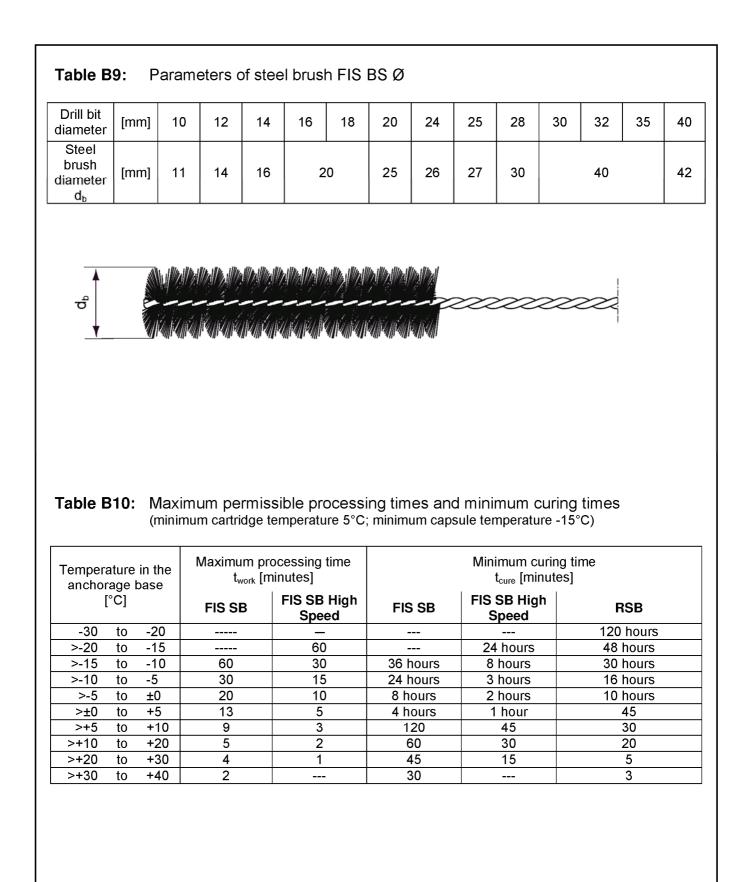
Installation parameters reinforcing bars

#### Table B5: Installation parameters fischer rebar anchor FRA Thread diameter M12<sup>1)</sup> M20 M16 M24 Nominal bar size [mm] 12 16 20 25 Ø Width across flat SW [mm] 19 24 30 36 25 Nominal drill bit diameter (14) 20 30 d۵ [mm] 16 Depth of drill hole ( $h_0 = I_{qes}$ ) [mm] $h_{ef} + I_{e}$ ho Distance concrete surface to 100 $\boldsymbol{\ell}_{\mathrm{e}}$ [mm] welded join [mm] 70 80 90 96 h<sub>ef,min</sub> Effective anchorage depth 140 [mm] 220 300 380 h<sub>ef,max</sub> Maximum torque moment max T<sub>inst</sub> [Nm] 40 60 120 150 105 Minimum spacing [mm] 55 65 85 S<sub>min</sub> [mm] Minimum edge distance 55 65 85 105 C<sub>min</sub> Pre-positioned ≤ d<sub>f</sub> [mm] 14 18 22 26 anchorage Diameter of clearance hole in the fixture<sup>2)</sup> Push through ≤ d<sub>f</sub> 18 22 26 32 [mm] anchorage Minimum thickness of h<sub>ef</sub>+30 [mm] $h_{ef} + 2d_0$ h<sub>min</sub> concrete member ≥ 100 <sup>1)</sup> Both drill bit diameters can be used <sup>2)</sup> For larger clearance holes in the fixture see TR 029, 4.2.2.1 Width across flat fischer rebar anchor FRA Marking for setting depth M, ٤. hef h Marking FRA C (for high corrosion-resistant steel) fischer Superbond Annex B 6 Intended Use Installation parameters fischer rebar anchor FRA

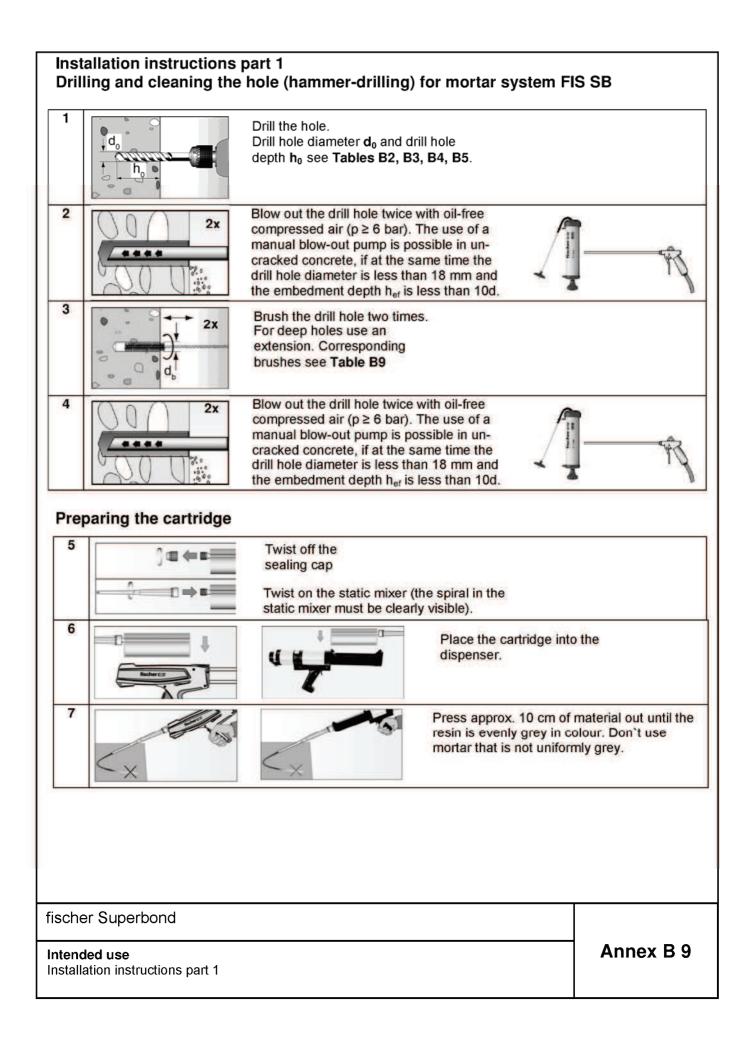
# Table B6: Dimensions of resin capsule RSB

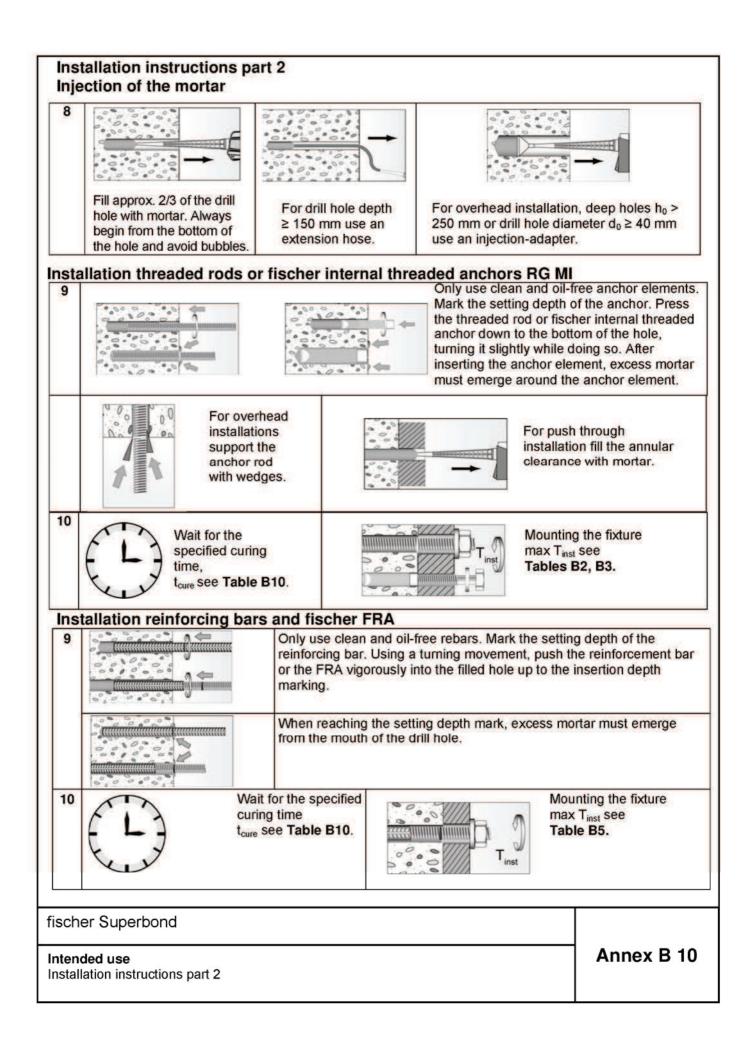
| Capsule  |         | [-]  | RSB<br>8 | RSB<br>10<br>mini | RSB<br>10 | RSB<br>12<br>mini | RSB<br>12 | RSB<br>16<br>mini | RSB<br>16 | RSB<br>16 E | RSB<br>20 | RSB<br>20 E<br>/24 | RSB<br>30 |
|----------|---------|------|----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------|-----------|--------------------|-----------|
| Diameter | $D_{p}$ | [mm] | 9,0      | 10                | 10,5      |                   | 12,5      |                   | 16,5      |             | 23,0      |                    | 27,5      |
| Length   | LP      | [mm] | 85       | 72                | 90        | 72                | 97        | 72                | 95        | 123         | 160       | 190                | 260       |

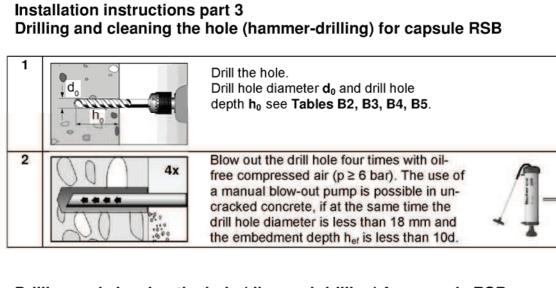




Table B7: Allocation Resin capsule RSB to fischer threaded rods RGM

| Size                            |                   |      | M8 | M10      | M12      | M16      | M20     | M24     | M30 |
|---------------------------------|-------------------|------|----|----------|----------|----------|---------|---------|-----|
| Nominal drill bit<br>diameter   | $d_0$             | [mm] | 10 | 12       | 14       | 18       | 25      | 28      | 35  |
| Minimum setting depth           | h <sub>ef,1</sub> | [mm] |    | 75       | 75       | 95       |         |         |     |
| Associated resin<br>capsule RSB |                   | [-]  |    | 10mini   | 12mini   | 16mini   |         |         |     |
| Medium setting depth            | h <sub>ef,2</sub> | [mm] | 80 | 90       | 110      | 125      | 170     | 210     | 280 |
| Associated resin<br>capsule RSB |                   | [-]  | 8  | 10       | 12       | 16       | 20      | 20 E/24 | 30  |
| Maximum setting depth           | h <sub>ef,3</sub> | [mm] |    | 150      | 150      | 190      | 210     |         |     |
| Associated resin<br>capsule RSB |                   | [-]  |    | 2x10mini | 2x12mini | 2x16mini | 20 E/24 |         |     |

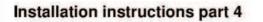

# Table B8: Allocation resin capsule RSB to fischer internal threaded anchor RG MI


| Size                            |                 |      | M8 | M10 | M12 | M16  | M20     |
|---------------------------------|-----------------|------|----|-----|-----|------|---------|
| Nominal drill bit diameter      | do              | [mm] | 14 | 18  | 20  | 24   | 32      |
| Setting depth                   | h <sub>ef</sub> | [mm] | 90 | 90  | 125 | 160  | 200     |
| Associated resin<br>capsule RSB |                 | [-]  | 10 | 12  | 16  | 16 E | 20 E/24 |

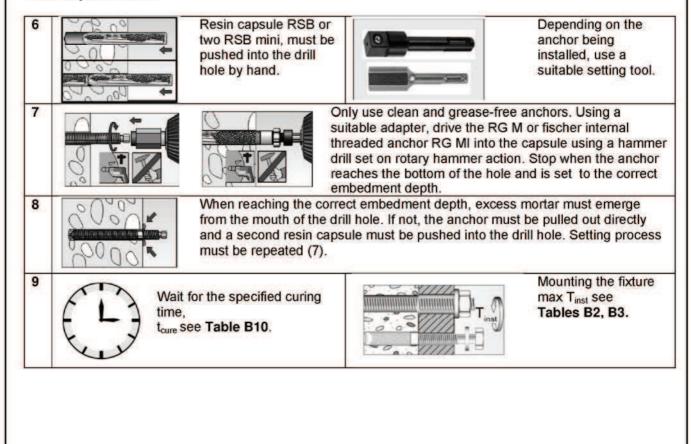

| Intended Use               | Annex B 7 |
|----------------------------|-----------|
| Resin capsule RSB          |           |
| Parameters and allocations |           |



| Intended Use                      |
|-----------------------------------|
| Cleaning tools                    |
| Processing times and curing times |






# Drilling and cleaning the hole (diamond-drilling) for capsule RSB

| 1      |                                      | Drill the hole.<br>Drill hole diameter <b>d</b> <sub>0</sub> and<br>drill hole depth <b>h</b> <sub>0</sub> see<br><b>Tables B2, B3.</b> | Break the drill core<br>and draw it out. |
|--------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 2      |                                      | Flush the drill hole until the water comes clear.                                                                                       |                                          |
| 3      | ◆ 2x                                 | Blow out the drill hole<br>two times, using oil-<br>free compressed air<br>(p > 6 bar)                                                  |                                          |
| 4      |                                      | Brush the drill hole two<br>times using a power<br>drill. Corresponding<br>brushes see <b>Table B9</b>                                  |                                          |
| 5      | 2x                                   | Blow out the drill hole<br>two times, using oil-<br>free compressed air<br>(p > 6 bar)                                                  |                                          |
| fische | er Superbond                         |                                                                                                                                         |                                          |
| Intend | ded use<br>ation instructions part 3 |                                                                                                                                         | Annex B 11                               |



Installation fischer anchor rods RGM or fischer internal threaded anchors RG MI with capsule RSB



fischer Superbond

Intended use Installation instructions part 4

| Size                             |                                   |            |        | M8                  | M10      | M12  | M16                 | M20               | M24 | M27 <sup>3)</sup> | M30 |  |  |
|----------------------------------|-----------------------------------|------------|--------|---------------------|----------|------|---------------------|-------------------|-----|-------------------|-----|--|--|
| Installation                     | dry and wet concrete              |            | [-]    |                     |          |      | 1                   | 0                 |     |                   |     |  |  |
| safety factor                    | flooded hole <sup>2)</sup>        | γ2         | [-]    | 1                   | ,2       |      |                     | 1,0               |     |                   |     |  |  |
| Combined pullout                 | and concrete                      | cone       | failur | е                   |          |      |                     |                   |     |                   |     |  |  |
| Diameter of calcula              | tion                              | d [        | mm]    | 8                   | 10       | 12   | 16                  | 20                | 24  | 27                | 30  |  |  |
| Characteristic bor               | nd resistance in                  | n un-      | crack  | ed conc             | rete C2  | 0/25 |                     |                   |     |                   |     |  |  |
| Temperature range I <sup>1</sup> | ) $	au_{ m Rk, ucr}$              | [N/r       | nm²]   | 12                  | 13       | 13   | 13                  | 13                | 12  | 10                | 10  |  |  |
| Temperature range II             | - 111,00                          | [N/r       | nm²]   | 12                  | 12       | 12   | 13                  | 13                | 12  | 10                | 10  |  |  |
| Temperature range II             | 111,401                           | [N/r       | nm²]   | 10                  | 11       | 11   | 11                  | 11                | 11  | 9                 | 9   |  |  |
| Temperature range IV             | $\prime^{1)}$ $\tau_{\rm Rk,ucr}$ | [N/r       | nm²]   | 10                  | 10       | 10   | 11                  | 10                | 10  | 8                 | 8   |  |  |
| Characteristic bor               | nd resistance in                  | n crae     | cked ( | concret             | e C20/25 | 5    |                     |                   |     |                   |     |  |  |
| Temperature range I <sup>1</sup> | ) $	au_{ m Rk,cr}$                | [N/r       | nm²]   | 6,5                 | 7,0      | 7,5  | 7,5                 | 7,5               | 7,5 | 7,5               | 7,5 |  |  |
| Temperature range II             | - 1 (1,01                         | [N/r       | nm²]   | 6,0                 | 6,5      | 7,5  | 7,5                 | 7,5               | 7,5 | 7,0               | 7,0 |  |  |
| Temperature range II             | $I^{1)}$ $\tau_{Rk,cr}$           | [N/r       | nm²]   | 5,5                 | 6,0      | 6,5  | 6,5                 | 6,5               | 6,5 | 6,0               | 6,0 |  |  |
| Temperature range IV             | $\prime^{1)}$ $	au_{Rk,cr}$       | [N/r       | nm²]   | 5,0                 | 5,5      | 6,0  | 6,0                 | 6,0               | 6,0 | 5,5               | 5,5 |  |  |
|                                  | C2                                | 25/30      | [-]    |                     |          |      | 1,0                 | 02                |     |                   |     |  |  |
|                                  |                                   | C30/37 [-] |        |                     | 1,04     |      |                     |                   |     |                   |     |  |  |
| Increasing                       | U                                 | 85/45      | [-]    | 1,07                |          |      |                     |                   |     |                   |     |  |  |
| factor $\tau_{Rk}$               |                                   | 0/50       | [-]    | 1,08                |          |      |                     |                   |     |                   |     |  |  |
|                                  |                                   | 5/55       | [-]    | 1,09                |          |      |                     |                   |     |                   |     |  |  |
|                                  | Cť                                | 50/60      | [-]    |                     |          |      | 1,                  | 10                |     |                   |     |  |  |
| Splitting failure                |                                   |            |        |                     |          |      |                     |                   |     |                   |     |  |  |
| Edge distance                    | h/h <sub>ef</sub> ≥2              |            | mm]    | 1,0 h <sub>ef</sub> |          |      |                     |                   |     |                   |     |  |  |
| C <sub>cr,sp</sub>               | 2,0>h/h <sub>ef</sub> >1          |            | mm]    |                     |          |      | 4,6 h <sub>ef</sub> |                   |     |                   |     |  |  |
|                                  | h/h <sub>ef</sub> ≤1              |            | mm]    |                     |          |      |                     | ን h <sub>ef</sub> |     |                   |     |  |  |
| Spacing                          | Sc                                | ;sp        | mm]    |                     |          |      | 2 c                 | cr,sp             |     |                   |     |  |  |

| Performances                             |  |
|------------------------------------------|--|
| Design of bonded anchors                 |  |
| Static or quasi-static action in tension |  |

| Size                |                                                |                                          |                                       | M8       | M10       | M12 | M16                                              | M20 | M24 | M30 |  |  |
|---------------------|------------------------------------------------|------------------------------------------|---------------------------------------|----------|-----------|-----|--------------------------------------------------|-----|-----|-----|--|--|
| Installation        | dry and wet concrete                           |                                          | [-]                                   |          |           |     | 1,0                                              |     |     |     |  |  |
| safety factor       | flooded hole                                   | γ2                                       | [-]                                   | 1        | ,2        |     |                                                  | 1,0 |     |     |  |  |
| Combined pullout    | and concret                                    | e con                                    | e failu                               | re       |           | _   |                                                  |     |     |     |  |  |
| Diameter of calcula | tion d                                         |                                          | [mm]                                  | 8        | 10        | 12  | 16                                               | 20  | 24  | 30  |  |  |
| Characteristic bor  | nd resistance                                  | in un                                    | -crac                                 | ked conc | rete C20/ | 25  |                                                  |     |     |     |  |  |
| Temperature range   | $I^{1)}$ $\tau_{Rk,ucr}$                       | [N/I                                     | mm²]                                  | 13       | 13        | 14  | 14                                               | 14  | 13  | 11  |  |  |
| Temperature range   | $II^{1)}$ $	au_{Rk,ucr}$                       | [N/I                                     | mm²]                                  | 12       | 13        | 13  | 14                                               | 13  | 13  | 10  |  |  |
| Temperature range   | 111,0101                                       |                                          |                                       | 11       | 12        | 12  | 12                                               | 12  | 11  | 9,5 |  |  |
| Temperature range   | $IV^{1)}$ $\tau_{Rk,ucr}$                      | $\tau_{\rm Rk,ucr}$ [N/mm <sup>2</sup> ] |                                       | 10       | 11        | 11  | 11                                               | 11  | 10  | 8,5 |  |  |
| Characteristic bor  | nd resistance                                  | in cra                                   | acked                                 | concret  | e C20/25  |     |                                                  |     |     |     |  |  |
| Temperature range   | $I^{1)}$ $\tau_{Rk,cr}$                        | [N/I                                     | mm²]                                  |          |           |     | 7,5                                              | 7,5 | 7,5 | 7,5 |  |  |
| Temperature range   | $II^{1)}$ $	au_{Rk,cr}$                        | [N/I                                     | mm²]                                  |          |           |     | 7,5                                              | 7,5 | 7,5 | 7,0 |  |  |
| Temperature range   | - 1 (K, O                                      | •                                        | mm²]                                  |          |           |     | 6,5                                              | 6,5 | 6,5 | 6,5 |  |  |
| Temperature range   | 1 44,61                                        | -                                        | mm²]                                  |          |           |     | 6,0                                              | 6,0 | 6,0 | 6,0 |  |  |
|                     |                                                | 25/30                                    |                                       |          |           |     | 1,02                                             |     |     |     |  |  |
|                     |                                                | 30/37                                    |                                       |          |           |     | 1,04                                             |     |     |     |  |  |
| Increasing          |                                                | 35/45                                    |                                       |          |           |     | 1,07                                             |     |     |     |  |  |
| factor $\tau_{Rk}$  |                                                | 40/50                                    |                                       |          |           |     | 1,08                                             |     |     |     |  |  |
|                     |                                                | 45/55                                    |                                       |          | 1,09      |     |                                                  |     |     |     |  |  |
| <u> </u>            | Ľ                                              | 50/60                                    | [-]                                   |          |           |     | 1,10                                             |     |     |     |  |  |
| Splitting failure   | L /L                                           |                                          | · · · · · · · · · · · · · · · · · · · |          |           |     | 4.0.5                                            |     |     |     |  |  |
| Edge distance       | h/h <sub>ef</sub> ≥                            |                                          | [mm]                                  |          |           | A   | 1,0 h <sub>ef</sub>                              | ) h |     |     |  |  |
| C <sub>cr,sp</sub>  | 2,0>h/h <sub>ef</sub> ><br>h/h <sub>ef</sub> ≤ |                                          | [mm]<br>[mm]                          |          |           | 4   | ,6 h <sub>ef</sub> – 1,8<br>2,26 h <sub>ef</sub> |     |     |     |  |  |
| Spacing             |                                                |                                          | [mm]<br>[mm]                          |          |           |     | 2,20 n <sub>ef</sub><br>2 c <sub>cr,sp</sub>     |     |     |     |  |  |

Г

| Performances                             |
|------------------------------------------|
| Design of bonded anchors                 |
| Static or quasi-static action in tension |

Т

| Size                                |                           |                                              |                      | M8    | M10 | M12                                          | M16 | M20 |
|-------------------------------------|---------------------------|----------------------------------------------|----------------------|-------|-----|----------------------------------------------|-----|-----|
|                                     | dry and we                | t                                            | [-]                  |       |     | 1,0                                          |     |     |
| Installation safety                 | concrete                  | concrete<br>γ <sub>2</sub>                   |                      |       |     | 1,0                                          |     |     |
| factor                              | flooded hole <sup>2</sup> | ) /2                                         | [-]                  | 1,2   |     | 1                                            | ,0  |     |
| Steel failure                       |                           |                                              | 1 1                  |       | 1   |                                              |     |     |
|                                     | Property                  | 5.8                                          | [kN]                 | 19    | 29  | 43                                           | 79  | 123 |
| Characteristic resistance           | class                     | 8.8                                          | [kN]                 | 29    | 47  | 68                                           | 108 | 179 |
| with screw N <sub>Rk,s</sub>        | Property                  | A4                                           | [kN]                 | 26    | 41  | 59                                           | 110 | 172 |
|                                     | class 70                  | С                                            | [kN]                 | 26    | 41  | 59                                           | 110 | 172 |
| Combined pullout and c              | oncrete cone              | failure                                      |                      |       |     |                                              |     |     |
| Diameter of calculation             |                           | d <sub>H</sub>                               | [mm]                 | 12    | 16  | 18                                           | 22  | 28  |
| Characteristic bond resi            | stance in un-o            | cracked co                                   | oncrete C2           | 20/25 |     |                                              |     |     |
| Temperature range I <sup>1)</sup>   |                           | $	au_{Rk,ucr}$                               | [N/mm²]              | 12    | 12  | 11                                           | 11  | 9,5 |
| Temperature range II <sup>1)</sup>  |                           | $	au_{Rk,ucr}$                               | [N/mm <sup>2</sup> ] | 12    | 11  | 11                                           | 10  | 9   |
| Temperature range III <sup>1)</sup> |                           | $	au_{Rk,ucr}$                               | [N/mm <sup>2</sup> ] | 11    | 10  | 10                                           | 9   | 8   |
| Temperature range IV <sup>1)</sup>  |                           | $	au_{Rk,ucr}$                               | [N/mm²]              | 10    | 9,5 | 9                                            | 8,5 | 7,5 |
| Characteristic bond resi            | stance in crac            | ked conci                                    | rete C20/2           | 5     |     |                                              |     |     |
| Temperature range I <sup>1)</sup>   |                           | $	au_{Rk,cr}$                                | [N/mm²]              |       |     | 5                                            |     |     |
| Temperature range II <sup>1)</sup>  |                           | $	au_{Rk,cr}$                                | [N/mm²]              |       |     | 5                                            |     |     |
| Temperature range III <sup>1)</sup> |                           | $	au_{Rk,cr}$                                | [N/mm <sup>2</sup> ] |       |     | 4,5                                          |     |     |
| Temperature range IV <sup>1)</sup>  |                           | $	au_{Rk,cr}$                                | [N/mm²]              |       |     | 4                                            |     |     |
|                                     |                           | C25/30                                       | [-]                  |       |     | 1,02                                         |     |     |
|                                     |                           | C30/37                                       | [-]                  | 1,04  |     |                                              |     |     |
| Increasing factor τ <sub>Rk</sub> Ψ | л <sub>с</sub> —          | C35/45                                       | [-]                  |       |     | 1,07                                         |     |     |
| 0                                   |                           | C40/50                                       | [-]                  |       |     | 1,08                                         |     |     |
|                                     |                           | C45/55                                       | [-]                  |       |     | 1,09                                         |     |     |
|                                     |                           | C50/60                                       | [-]                  |       |     | 1,10                                         |     |     |
| Splitting failure                   |                           |                                              |                      |       |     |                                              |     |     |
| Edge distance e                     |                           | h/h <sub>ef</sub> ≥2,0                       | [mm]                 |       |     | 1,0 h <sub>ef</sub>                          | 9 h |     |
| Edge distance c <sub>cr,sp</sub>    | 2,03                      | >h/h <sub>ef</sub> >1,3                      | [mm]                 |       | 4,6 | 5 h <sub>ef</sub> – 1,8                      |     |     |
| Spacing                             |                           | h/h <sub>ef</sub> ≤1,3<br>s <sub>cr,sp</sub> | [mm]<br>[mm]         |       |     | 2,26 h <sub>ef</sub><br>2 c <sub>cr,sp</sub> |     |     |

<sup>1)</sup> See Annex B 2 <sup>2)</sup> Only RSB

| Performances                             |
|------------------------------------------|
| Design of bonded anchors                 |
| Static or quasi-static action in tension |

| Table C4: Characteristic values of resistance for fischer internal threaded anchors RG MI |
|-------------------------------------------------------------------------------------------|
| under tension load with capsule RSB in diamond drilled hole                               |

| Size                                |                      |                        |                      | M8    | M10 | M12                     | M16 | M20 |
|-------------------------------------|----------------------|------------------------|----------------------|-------|-----|-------------------------|-----|-----|
| Installation safety                 | dry and wet concrete |                        | [-]                  |       | 1   | 1,0                     |     |     |
| factor                              | flooded hole         | γ2                     | [-]                  | 1,2   | 1,0 |                         |     |     |
| Steel failure                       |                      |                        |                      |       |     |                         |     |     |
|                                     | Property             | 5.8                    | [kN]                 | 19    | 29  | 43                      | 79  | 123 |
| Characteristic resistance           | class                | 8.8                    | [kN]                 | 29    | 47  | 68                      | 108 | 179 |
| with screw N <sub>Rk,s</sub>        | Property             | A4                     | [kN]                 | 26    | 41  | 59                      | 110 | 172 |
|                                     | class 70             | С                      | [kN]                 | 26    | 41  | 59                      | 110 | 172 |
| Combined pullout and co             | oncrete cone fa      | ailure                 |                      |       |     |                         |     |     |
| Diameter of calculation             |                      | d <sub>H</sub>         | [mm]                 | 12    | 16  | 18                      | 22  | 28  |
| Characteristic bond resis           | stance in un-ci      | racked co              | oncrete C2           | 20/25 |     |                         |     | •   |
| Temperature range I <sup>1)</sup>   |                      | $\tau_{Rk,ucr}$        | [N/mm <sup>2</sup> ] | 13    | 12  | 12                      | 11  | 10  |
| Temperature range II <sup>1)</sup>  |                      | $\tau_{\rm Rk,ucr}$    | [N/mm <sup>2</sup> ] | 13    | 12  | 12                      | 11  | 9,5 |
| Temperature range III <sup>1)</sup> |                      | $\tau_{\rm Rk,ucr}$    | [N/mm <sup>2</sup> ] | 11    | 11  | 10                      | 9,5 | 8,5 |
| Temperature range IV <sup>1)</sup>  |                      | $\tau_{\rm Rk,ucr}$    | [N/mm²]              | 10    | 10  | 9,5                     | 9   | 8   |
| Characteristic bond resis           | stance in crack      | ked conc               | rete C20/2           | 5     |     |                         |     |     |
| Temperature range I <sup>1)</sup>   |                      | $\tau_{\rm Rk.cr}$     | [N/mm <sup>2</sup> ] |       |     | į                       | 5   |     |
| Temperature range II <sup>1)</sup>  |                      | $	au_{Rk,cr}$          | [N/mm <sup>2</sup> ] |       |     | :                       | 5   |     |
| Temperature range III <sup>1)</sup> |                      | $\tau_{\rm Rk,cr}$     | [N/mm <sup>2</sup> ] |       |     | 4                       | ,5  |     |
| Temperature range IV <sup>1)</sup>  |                      | $	au_{Rk,cr}$          | [N/mm <sup>2</sup> ] |       |     | 4                       | 4   |     |
|                                     |                      | C25/30                 | [-]                  |       |     | 1,02                    |     |     |
|                                     |                      | C30/37                 | [-]                  |       |     | 1,04                    |     |     |
| Increasing                          |                      | C35/45                 | [-]                  |       |     | 1,07                    |     |     |
| factor $\tau_{Rk}$ $\Psi_{c}$       |                      | C40/50                 | [-]                  |       |     | 1,08                    |     |     |
|                                     |                      | C45/55                 | [-]                  |       |     | 1,09                    |     |     |
|                                     |                      | C50/60                 | [-]                  |       |     | 1,10                    |     |     |
| Splitting failure                   |                      |                        |                      |       |     |                         |     |     |
|                                     |                      | h/h <sub>ef</sub> ≥2,0 | [mm]                 |       |     | 1,0 h <sub>ef</sub>     |     |     |
| Edge distance c <sub>cr,sp</sub>    | 2,0>                 | h/h <sub>ef</sub> >1,3 | [mm]                 |       | 4,6 | 3 h <sub>ef</sub> – 1,8 | 8 h |     |
|                                     |                      | h/h <sub>ef</sub> ≤1,3 | [mm]                 |       |     | 2,26 h <sub>ef</sub>    |     |     |
| Spacing                             |                      | S <sub>cr,sp</sub>     | [mm]                 |       |     | 2 c <sub>cr,sp</sub>    |     |     |

<sup>1)</sup> See Annex B 2

| Performances                             |
|------------------------------------------|
| Design of bonded anchors                 |
| Static or quasi-static action in tension |

| Size                                                                                                                                                                        |                                                                     | r                            | <b>M</b> 8                           | M10                        | M12                                 | M16                              | M20                               | M24                           | M27                           | M30                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------|--------------------------------------|----------------------------|-------------------------------------|----------------------------------|-----------------------------------|-------------------------------|-------------------------------|------------------------------------|
| Factor k in equation (5.7) o<br>TR 029 for the design of<br>Bonded Anchors                                                                                                  | f<br>k [                                                            | -]                           |                                      |                            |                                     | 2,                               | ,0                                |                               |                               | •                                  |
| Table C6: Characteris<br>under shear                                                                                                                                        |                                                                     | f resi                       | stance                               |                            |                                     |                                  | 1                                 |                               |                               |                                    |
| Size                                                                                                                                                                        |                                                                     |                              |                                      | M                          | 8                                   | M10                              | M12                               | M                             | 16                            | M20                                |
| Installation safety factor                                                                                                                                                  |                                                                     | γ2                           | [-]                                  |                            |                                     |                                  | 1,0                               |                               |                               |                                    |
|                                                                                                                                                                             |                                                                     |                              |                                      |                            |                                     |                                  |                                   |                               |                               |                                    |
| Steel failure without leve                                                                                                                                                  | r <b>arm</b>                                                        |                              |                                      |                            |                                     |                                  |                                   |                               |                               |                                    |
| Steel failure without leve                                                                                                                                                  | r <b>arm</b><br>Property _                                          | 5.8                          | [kN]                                 | 9,                         | 2                                   | 14,5                             | 21,1                              | 3                             | 9,2                           | 62,0                               |
|                                                                                                                                                                             |                                                                     | 5.8<br>8.8                   | [kN]<br>[kN]                         | 9,;<br>14                  |                                     | 14,5<br>23,2                     | 21,1<br>33,7                      |                               | 9,2                           | 62,0<br>90,0                       |
| Characteristic                                                                                                                                                              | Property _                                                          |                              |                                      | · ·                        | ,6                                  |                                  |                                   | 6                             |                               |                                    |
| Characteristic                                                                                                                                                              | Property _<br>class                                                 | 8.8                          | [kN]                                 | 14                         | ,6<br>,8                            | 23,2                             | 33,7                              | 62<br>54                      | 2,7                           | 90,0                               |
| Characteristic<br>resistance V <sub>Rk,s</sub>                                                                                                                              | Property<br>class<br>Property<br>class 70                           | 8.8<br>A4                    | [kN]<br>[kN]                         | 14<br>12                   | ,6<br>,8                            | 23,2<br>20,3                     | 33,7<br>29,5                      | 62<br>54                      | 2,7<br>4,8                    | 90,0<br>86,0                       |
| Characteristic<br>resistance V <sub>Rk,s</sub>                                                                                                                              | Property<br>class<br>Property<br>class 70                           | 8.8<br>A4                    | [kN]<br>[kN]                         | 14<br>12<br>12             | ,6<br>,8<br>,8                      | 23,2<br>20,3                     | 33,7<br>29,5                      | 62<br>54<br>54                | 2,7<br>4,8                    | 90,0<br>86,0                       |
| Characteristic<br>resistance V <sub>Rk,s</sub><br>Steel failure with lever an                                                                                               | Property<br>class<br>Property<br>class 70                           | 8.8<br>A4<br>C               | [kN]<br>[kN]<br>[kN]                 | 14<br>12<br>12             | ,6<br>,8<br>,8<br>,8                | 23,2<br>20,3<br>20,3             | 33,7<br>29,5<br>29,5              | 6;<br>5;<br>5;                | 2,7<br>4,8<br>4,8             | 90,0<br>86,0<br>86,0               |
| Characteristic<br>resistance V <sub>Rk,s</sub><br><b>Steel failure with lever a</b> r<br>Characteristic                                                                     | Property<br>class<br>Property<br>class 70<br>m<br>Property<br>class | 8.8<br>A4<br>C<br>5.8        | [kN]<br>[kN]<br>[kN]<br>[Nm]         | 14<br>12<br>12<br>20       | ,6<br>,8<br>,8<br>0<br>0            | 23,2<br>20,3<br>20,3<br>39       | 33,7<br>29,5<br>29,5<br>68        | 62<br>54<br>54<br>1<br>2      | 2,7<br>4,8<br>4,8<br>73       | 90,0<br>86,0<br>86,0<br>337        |
| Steel failure without level<br>Characteristic<br>resistance V <sub>Rk,s</sub><br>Steel failure with lever an<br>Characteristic<br>resistance M <sup>0</sup> <sub>Rk,s</sub> | Property<br>class<br>Property<br>class 70<br>m<br>Property          | 8.8<br>A4<br>C<br>5.8<br>8.8 | [kN]<br>[kN]<br>[kN]<br>[Nm]<br>[Nm] | 14<br>12<br>12<br>2(<br>3( | ,6<br>,8<br>,8<br>,8<br>0<br>0<br>0 | 23,2<br>20,3<br>20,3<br>39<br>60 | 33,7<br>29,5<br>29,5<br>68<br>105 | 62<br>54<br>54<br>1<br>2<br>2 | 2,7<br>4,8<br>4,8<br>73<br>66 | 90,0<br>86,0<br>86,0<br>337<br>519 |

| monte                              | r FIS SB in ha                      | ammer a              | rillea r | lole    |     |     |                      |     |     |     |     |
|------------------------------------|-------------------------------------|----------------------|----------|---------|-----|-----|----------------------|-----|-----|-----|-----|
| Size                               | Ø                                   | [mm]                 | 8        | 10      | 12  | 14  | 16                   | 20  | 25  | 28  | 32  |
| Installation safety fact           | or γ <sub>2</sub>                   | [-]                  |          |         |     |     | 1,0                  |     |     |     |     |
| Combined pullout ar                | nd concrete cor                     | e failure            |          |         |     |     |                      |     |     |     |     |
| Diameter of calculatio             | n d                                 | [mm]                 | 8        | 10      | 12  | 14  | 16                   | 20  | 25  | 28  | 32  |
| Characteristic bond                | resistance in u                     | n-cracked            | concr    | ete C20 | /25 |     |                      |     |     |     |     |
| Temperature range I <sup>1)</sup>  | $	au_{Rk,ucr}$                      | [N/mm <sup>2</sup> ] | 8,0      | 8,5     | 9,0 | 9,5 | 9,5                  | 10  | 9,5 | 9,0 | 7,5 |
| Temperature range II <sup>1</sup>  |                                     | [N/mm <sup>2</sup> ] | 8,0      | 8,5     | 9,0 | 9,0 | 9,5                  | 9,5 | 9,0 | 8,5 | 7,5 |
| Temperature range III              | 1) $	au_{Rk,ucr}$                   | [N/mm <sup>2</sup> ] | 7,0      | 7,5     | 8,0 | 8,0 | 8,5                  | 8,5 | 8,0 | 7,5 | 6,5 |
| Temperature range IV               | $\tau^{(1)}$ $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 6,5      | 7,0     | 7,0 | 7,5 | 7,5                  | 8,0 | 7,5 | 7,0 | 6,0 |
| Characteristic bond                | resistance in ci                    | acked co             | ncrete   | C20/25  |     |     |                      |     |     |     |     |
| Temperature range I <sup>1)</sup>  | $	au_{Rk,cr}$                       | [N/mm <sup>2</sup> ] | 4,5      | 6,0     | 6,0 | 6,0 | 7,0                  | 6,0 | 6,0 | 6,0 | 6,0 |
| Temperature range II <sup>1</sup>  | ) $	au_{Rk,cr}$                     | [N/mm <sup>2</sup> ] | 4,5      | 5,5     | 5,5 | 5,5 | 6,5                  | 6,0 | 6,0 | 6,0 | 6,0 |
| Temperature range III              | 1) $	au_{Rk,cr}$                    | [N/mm <sup>2</sup> ] | 4,0      | 5,0     | 5,0 | 5,0 | 6,0                  | 5,5 | 5,5 | 5,5 | 5,5 |
| Temperature range IV               | $\tau^{(1)}$ $\tau_{\text{Rk,cr}}$  | [N/mm <sup>2</sup> ] | 3,5      | 4,5     | 4,5 | 4,5 | 5,5                  | 5,0 | 5,0 | 5,0 | 5,0 |
|                                    | C25/30                              | [-]                  |          |         |     |     | 1,02                 |     |     |     |     |
|                                    | C30/37                              | [-]                  |          |         |     |     | 1,04                 |     |     |     |     |
| Increasing                         | C35/45                              | [-]                  |          |         |     |     | 1,07                 |     |     |     |     |
| factor $\tau_{Rk}$ $\Psi_c$        | C40/50                              | [-]                  |          |         |     |     | 1,08                 |     |     |     |     |
|                                    | C45/55                              | [-]                  |          |         |     |     | 1,09                 |     |     |     |     |
|                                    | C50/60                              | [-]                  |          |         |     |     | 1,10                 |     |     |     |     |
| Splitting failure                  |                                     |                      |          |         |     |     |                      |     |     |     |     |
| _                                  | h/h <sub>ef</sub> ≥2,0              | [mm]                 |          |         |     |     | 1,0 h <sub>ef</sub>  |     |     |     |     |
| Edge distance $c_{\text{cr,sp}}$ _ | 2,0>h/h <sub>ef</sub> >1,3          | [mm]                 |          |         |     |     | h <sub>ef</sub> -1,  |     |     |     |     |
|                                    | h/h <sub>ef</sub> ≤1,3              | [mm]                 |          |         |     |     | 2,26 h <sub>et</sub> |     |     |     |     |
| Spacing                            | S <sub>cr,sp</sub>                  | [mm]                 |          |         |     |     | 2 c <sub>cr,sp</sub> |     |     |     |     |

| Performances                             |
|------------------------------------------|
| Design of bonded anchors                 |
| Static or quasi-static action in tension |

**Table C8:** Characteristic values of resistance for fischer rebar anchors FRA under tension

 loads with mortar FIS SB in hammer drilled hole

| Size                                |                            |                      | M12           | M16                 | M20               | M24 |
|-------------------------------------|----------------------------|----------------------|---------------|---------------------|-------------------|-----|
| Installation safety factor          | γ2                         | [-]                  |               | 1                   | ,0                |     |
| Steel failure                       |                            |                      |               |                     |                   |     |
| Characteristic resistance           | N <sub>Rk,s</sub>          | [kN]                 | 63            | 111                 | 173               | 270 |
| Partial safety factor               | γ <sub>Ms,N</sub> 1)       | [-]                  |               | 1                   | ,4                |     |
| Combined pullout and o              | concrete cone f            | ailure               |               |                     |                   |     |
| Diameter of calculation             | d                          | [mm]                 | 12            | 16                  | 20                | 25  |
| Characteristic bond res             | istance in un-c            | racked cor           | ncrete C20/25 |                     |                   |     |
| Temperature range I <sup>2)</sup>   | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 9,0           | 9,5                 | 10                | 9,5 |
| Temperature range II <sup>2)</sup>  | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 9,0           | 9,5                 | 9,5               | 9,0 |
| Temperature range III <sup>2)</sup> | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 8,0           | 8,5                 | 8,5               | 8,0 |
| Temperature range IV <sup>2)</sup>  | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 7,0           | 7,5                 | 8,0               | 7,5 |
| Characteristic bond res             | istance in crac            | ked concre           | ete C20/25    |                     |                   |     |
| Temperature range I <sup>2)</sup>   | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 6,0           | 7,0                 | 6,0               | 6,0 |
| Temperature range II <sup>2)</sup>  | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 5,5           | 6,5                 | 6,0               | 6,0 |
| Temperature range III <sup>2)</sup> | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 5,0           | 6,0                 | 5,5               | 5,5 |
| Temperature range IV <sup>2)</sup>  | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 4,5           | 5,5                 | 5,0               | 5,0 |
|                                     | C25/30                     | [-]                  |               | 1,                  | 02                |     |
|                                     | C30/37                     | [-]                  |               | 1,                  | 04                |     |
| Increasing                          | C35/45                     | [-]                  |               | 1,                  | 07                |     |
| factor $\tau_{Rk}$ $\Psi_c$         | C40/50                     | [-]                  |               | 1,                  | 19                |     |
|                                     | C45/55                     | [-]                  |               | 1,                  | 08                |     |
|                                     | C50/60                     | [-]                  |               | 1,                  | 10                |     |
| Splitting failure                   |                            |                      |               |                     |                   |     |
|                                     | h/h <sub>ef</sub> ≥2,0     | [mm]                 |               | 1,0                 | ) h <sub>ef</sub> |     |
| Edge distance c <sub>cr,sp</sub>    | 2,0>h/h <sub>ef</sub> >1,3 | [mm]                 |               | 4,6 h <sub>ef</sub> | – 1,8 h           |     |
|                                     | h/h <sub>ef</sub> ≤1,3     | [mm]                 |               |                     | 6 h <sub>ef</sub> |     |
| Spacing                             | S <sub>cr,sp</sub>         | [mm]                 |               | 2 0                 | cr,sp             |     |

<sup>1)</sup> In absence of other national regulations

<sup>2)</sup> See Annex B 2

fischer Superbond

| Performances                             |
|------------------------------------------|
| Design of bonded anchors                 |
| Static or quasi-static action in tension |

| lize                                                             | ø        | [mm]                           | 8 1      | 10    | 12    | 14    | 16                | 20    | 25     | 28      | 3  |
|------------------------------------------------------------------|----------|--------------------------------|----------|-------|-------|-------|-------------------|-------|--------|---------|----|
| concrete pryout failure                                          | <u> </u> |                                | _        |       |       |       |                   |       |        |         |    |
| actor k in equation (5.7) of                                     | k        | [-]                            |          |       |       |       | 2,0               |       |        |         |    |
| <b>Table C10:</b> Characteristic va<br>load with mortar          |          |                                | tance fo | or fi | scher | rebar | <sup>-</sup> anch | ors F | RA uno | der she | ar |
| Size                                                             |          |                                |          |       | M12   |       | M16               | I     | M20    | M24     |    |
| Steel failure without lever arm                                  |          |                                | 1        | 1     |       |       |                   |       |        |         |    |
| Characteristic resistance                                        |          | V <sub>Rk,s</sub>              | [kN]     |       | 30    |       | 55                |       | 86     | 124     |    |
| Partial safety factor                                            |          | γ̃Ms,V                         | [-]      |       |       |       | 1                 | ,56   |        |         |    |
| Steel failure with lever arm                                     |          | 0                              | 1        | 1     |       |       |                   |       |        |         |    |
| Characteristic resistance                                        |          | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]     |       | 92    |       | 233               |       | 454    | 785     |    |
| Partial safety factor                                            |          | γ̂Ms,∨ <sup>1</sup> )          | [-]      |       |       |       | 1                 | ,56   |        |         |    |
| Concrete pryout failure                                          |          |                                | 1        |       |       |       |                   |       |        |         |    |
| Factor k in equation (5.7) of TR 02 the design of Bonded Anchors | 9 for    | k                              | [-]      |       |       |       | :                 | 2,0   |        |         |    |
|                                                                  |          |                                |          |       |       |       |                   |       |        |         |    |
|                                                                  |          |                                |          |       |       |       |                   |       |        |         |    |

| Size                                                                      |                                                     |                           | M8                            | M10             | M12            | M16             | M20                | M24           | M27                | M30                |
|---------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|-------------------------------|-----------------|----------------|-----------------|--------------------|---------------|--------------------|--------------------|
|                                                                           | Un-cra                                              | acked and cracke          | d conc                        | rete; tei       | mperatu        | ure rang        | ge I, II, I        | II, IV        |                    |                    |
| Displacement                                                              | δ <sub>N0</sub>                                     | [mm/(N/mm <sup>2</sup> )] | 0,07                          | 0,08            | 0,09           | 0,10            | 0,11               | 0,12          | 0,13               | 0,13               |
| Displacement                                                              | δ <sub>N∞</sub>                                     | [mm/(N/mm <sup>2</sup> )] | 0,13                          | 0,14            | 0,15           | 0,17            | 0,17               | 0,18          | 0,19               | 0,19               |
| Table C12: Displacements under shear load for threaded rods <sup>1)</sup> |                                                     |                           |                               |                 |                |                 |                    |               |                    |                    |
|                                                                           | lacemen                                             | its under shear           |                               |                 |                |                 | M20                | M24           | M27                | <br>               |
|                                                                           |                                                     | nts under shear           | M8                            | M10             | M12            | M16             | M20<br>je I, II, I | M24<br>II, IV | M27                | M3(                |
| Size                                                                      |                                                     |                           | M8                            | M10             | M12            | M16             |                    |               | <b>M27</b><br>0,05 |                    |
| Size<br>Displacement<br>Displacement                                      | <b>Un-cra</b><br>δ <sub>V0</sub><br>δ <sub>V∞</sub> | acked and cracke          | M8<br>ed conc<br>0,18<br>0,27 | M10<br>rete; te | M12<br>mperatu | M16<br>ure ranç | ge I, II, I        | II, IV        |                    | <b>M30</b><br>0,05 |

| Size                                                              |                 |                           | M8   | M10  | M12  | M16  | M20  |  |  |  |
|-------------------------------------------------------------------|-----------------|---------------------------|------|------|------|------|------|--|--|--|
| Un-cracked and cracked concrete; temperature range I, II, III, IV |                 |                           |      |      |      |      |      |  |  |  |
| Displacement                                                      | δ <sub>N0</sub> | [mm/(N/mm <sup>2</sup> )] | 0,09 | 0,10 | 0,10 | 0,11 | 0,19 |  |  |  |
| Displacement                                                      | δ <sub>N∞</sub> | [mm/(N/mm <sup>2</sup> )] | 0,13 | 0,15 | 0,15 | 0,17 | 0,19 |  |  |  |

<sup>1)</sup> Calculation of the displacement for design load Displacement for short term load =  $\delta_{N0} \cdot \tau_{sd} / 1.4$ Displacement for long term load =  $\delta_{N\infty} \cdot \tau_{sd} / 1.4$ ( $\tau_{sd}$ : design bond strength)

Table C14: Displacements under shear load for fischer internal threaded anchors RG MI<sup>1)</sup>

| Size               |                 |                | M8           | M10       | M12  | M16  | M20  |
|--------------------|-----------------|----------------|--------------|-----------|------|------|------|
| Un-cracked and cra | cked concret    | e; temperature | range I, II, | , III, IV |      |      |      |
| Displacement       | δ <sub>vo</sub> | [mm/kN]        | 0,12         | 0,09      | 0,08 | 0,07 | 0,05 |
| Displacement       | δ <sub>V∞</sub> | [mm/kN]        | 0,18         | 0,14      | 0,12 | 0,10 | 0,08 |

<sup>1)</sup> Calculation of the displacement for design load Displacement for short term load =  $\delta_{V0} \cdot V_d / 1.4$ Displacement for long term load =  $\delta_{V\infty} \cdot V_d / 1.4$ 

 $(V_d: design shear resistance)$ 

## fischer Superbond

Performances Displacements threaded rods and fischer internal threaded anchor RG MI

| Size                                                                                                                                                                                                                                                        |                                                                                  | Ø                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                       | 10                                                                                                                                                   | 12                                | 14                                                                          | 16                                   | 20                                                                                                         | 25                                                     | 28               | 32                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|---------------------------------|
| Un-cracked an                                                                                                                                                                                                                                               | d crack                                                                          | ked concrete; t                                                                                                                                                                                                                                                                           | empera                                                                                                                                                                  | ture rang                                                                                                                                            | ge I, II, I                       | II, IV                                                                      |                                      |                                                                                                            |                                                        | •                |                                 |
| Displacement                                                                                                                                                                                                                                                | δ <sub>N0</sub>                                                                  | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                 | 0,07                                                                                                                                                                    | 0,08                                                                                                                                                 | 0,09                              | 0,09                                                                        | 0,10                                 | 0,11                                                                                                       | 0,12                                                   | 0,13             | 0,1:                            |
| Displacement                                                                                                                                                                                                                                                | δ <sub>N∞</sub>                                                                  | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                 | 0,12                                                                                                                                                                    | 0,13                                                                                                                                                 | 0,13                              | 0,15                                                                        | 0,16                                 | 0,16                                                                                                       | 0,18                                                   | 0,20             | 0,2                             |
|                                                                                                                                                                                                                                                             | t for sho<br>t for lon<br>bond sti                                               | fort term load = $\delta$ term load = $\delta$ rength)                                                                                                                                                                                                                                    | δ <sub>N0</sub> · τ <sub>sd</sub> /<br><sub>N∞</sub> · τ <sub>sd</sub> /                                                                                                | 1,4<br>1,4                                                                                                                                           | or reint                          | forcing                                                                     | bars <sup>1)</sup>                   |                                                                                                            |                                                        |                  |                                 |
| Size                                                                                                                                                                                                                                                        |                                                                                  | Ø                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                       | 10                                                                                                                                                   | 12                                | 14                                                                          | 16                                   | 20                                                                                                         | 25                                                     | 28               | 32                              |
| Un-cracked an                                                                                                                                                                                                                                               | d crack                                                                          | ked concrete; I                                                                                                                                                                                                                                                                           | emperat                                                                                                                                                                 | ture rang                                                                                                                                            | ge I, II, I                       | li, IV                                                                      | I                                    |                                                                                                            |                                                        | 1                | 1                               |
| Displacement                                                                                                                                                                                                                                                | $\delta_{V0}$                                                                    | [mm/kN]                                                                                                                                                                                                                                                                                   | 0,18                                                                                                                                                                    | 0,15                                                                                                                                                 | 0,12                              | 0,10                                                                        | 0,09                                 | 0,07                                                                                                       | 0,06                                                   | 0,05             | 0,0                             |
| Displacement                                                                                                                                                                                                                                                | δ <sub>V∞</sub>                                                                  | [mm/kN]                                                                                                                                                                                                                                                                                   | 0,27                                                                                                                                                                    | 0,22                                                                                                                                                 | 0,18                              | 0,16                                                                        | 0,14                                 | 0,11                                                                                                       | 0,09                                                   | 0,08             | 0,0                             |
|                                                                                                                                                                                                                                                             | Displac                                                                          | cements und                                                                                                                                                                                                                                                                               | er tensi                                                                                                                                                                | ion load                                                                                                                                             |                                   |                                                                             |                                      |                                                                                                            |                                                        |                  | 10.4                            |
| Table C17: [<br>Size<br>Un-cracked and                                                                                                                                                                                                                      |                                                                                  |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                      | N                                 | <b>/</b> 12                                                                 | bar an<br>M16                        |                                                                                                            | <sup>T</sup> RA <sup>1)</sup><br>M20                   | N                | 124                             |
| Size<br>Un-cracked and                                                                                                                                                                                                                                      |                                                                                  |                                                                                                                                                                                                                                                                                           | emperat                                                                                                                                                                 |                                                                                                                                                      | je I, II, II                      | <b>/</b> 12                                                                 |                                      | 5                                                                                                          |                                                        |                  | <b>124</b><br>,12               |
| Size<br>Un-cracked and<br>Displacement<br>Displacement                                                                                                                                                                                                      | <b>d crack</b><br>f the dis                                                      | t <mark>ed concrete; t</mark><br>δ <sub>N0</sub><br>δ <sub>N∞</sub>                                                                                                                                                                                                                       | <b>emperat</b><br>[mm<br>[mm<br>design lo                                                                                                                               | t <b>ure rang</b><br>n/(N/mm²)<br>n/(N/mm²)<br>ad                                                                                                    | <b>ie I, II, II</b><br>)] C       | /12<br>II, IV                                                               | M16                                  | <b>5</b>                                                                                                   | M20                                                    | 0                |                                 |
| Size<br>Un-cracked and<br>Displacement<br>Displacement<br><sup>1)</sup> Calculation of<br>Displacemen<br>Displacemen<br>$(\tau_{sd}: design the table C18: [$                                                                                               | d crack<br>f the dis<br>t for she<br>t for lon<br>pond str                       | and concrete; t<br>$δ_{N0}$<br>$δ_{N∞}$<br>splacement for one<br>fort term load = δ<br>rength)                                                                                                                                                                                            | emperat<br>[mm<br>[mm<br>design lo<br>δ <sub>N0</sub> · τ <sub>sd</sub> /<br><sub>N∞</sub> · τ <sub>sd</sub> /                                                          | t <b>ure rang</b><br>n/(N/mm <sup>2</sup> )<br>n/(N/mm <sup>2</sup> )<br>ad<br>1,4<br>1,4                                                            | N<br> e I, II, II<br>)] C<br>)] C | <b>M12</b><br>II, IV<br>),09<br>),13                                        | 0,10<br>0,10<br>0,10                 | 5<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D           | M20<br>0,11<br>0,16                                    | 0                | ,12                             |
| Size<br>Jn-cracked and<br>Displacement<br>Displacement<br><sup>1)</sup> Calculation of<br>Displacemen<br>Displacemen<br>$(\tau_{sd}$ : design t<br>Table C18: [                                                                                             | d crack<br>f the dis<br>t for she<br>t for lon<br>bond str<br>Displac            | and concrete; t<br>$\delta_{N0}$<br>$\delta_{N∞}$<br>⇒placement for contract term load = δ<br>and term load = δ<br>rength)<br>cements und                                                                                                                                                 | emperat<br>[mm<br>[mm<br>design lo<br>δ <sub>N0</sub> · τ <sub>sd</sub> /<br><sub>N∞</sub> · τ <sub>sd</sub> /<br>er shea                                               | ture rang<br>n/(N/mm²)<br>n/(N/mm²)<br>ad<br>1,4<br>1,4<br>ar load f                                                                                 | or fisch                          | <b>//12</b><br>11, IV<br>0,09<br>0,13<br>her reba                           | 0,10<br>0,10                         | 5<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D           | <b>M20</b><br>0,11<br>0,16                             | 0                | ,12                             |
| Size<br>Un-cracked and<br>Displacement<br>Displacement<br><sup>1)</sup> Calculation of<br>Displacemen<br>Displacemen<br>$(\tau_{sd}: design theTable C18: [SizeUn-cracked and$                                                                              | d crack<br>f the dis<br>t for she<br>t for lon<br>bond str<br>Displac            | and concrete; t<br>$δ_{N0}$<br>$δ_{N∞}$<br>splacement for or<br>fort term load = δ<br>rength)<br>cements und<br>and concrete; t                                                                                                                                                           | emperat<br>[mm<br>[mm<br>design lo<br>δ <sub>N0</sub> · τ <sub>sd</sub> /<br><sub>N∞</sub> · τ <sub>sd</sub> /<br>er shea                                               | ture rang<br>n/(N/mm <sup>2</sup> )<br>n/(N/mm <sup>2</sup> )<br>ad<br>1,4<br>1,4<br>1,4<br>ar load fo                                               | or fisch                          | <b>//12</b><br>II, IV<br>0,09<br>0,13<br>her reba<br><b>//12</b><br>II, IV  | 0,10<br>0,10<br>0,10<br>ar anch      | 5  <br>5  <br>5  <br>5  <br>5                                                                              | M20<br>0,11<br>0,16<br>RA <sup>1)</sup><br>M20         | 0<br>0           | ,12<br>,18<br>124               |
| Size<br>Un-cracked and<br>Displacement<br>Displacement<br>$^{1)}$ Calculation of<br>Displacemen<br>$(\tau_{sd} : design theTable C18: [SizeUn-cracked andDisplacement$                                                                                      | d crack<br>f the dis<br>t for she<br>t for lon<br>bond str<br>Displac            | ed concrete; t<br>$\delta_{N0}$<br>$\delta_{N∞}$<br>splacement for contract term load = δ<br>or term load = δ<br>rength)<br>cements und<br>sed concrete; t<br>$\delta_{V0}$                                                                                                               | emperat<br>[mm<br>[mm<br>design lo<br>δ <sub>N0</sub> · τ <sub>sd</sub> /<br><sub>N∞</sub> · τ <sub>sd</sub> /<br>er shea                                               | ture rang<br>n/(N/mm²)<br>n/(N/mm²)<br>ad<br>1,4<br>1,4<br>ar load fe<br>ture rang<br>[mm/kN                                                         | or fisch                          | <b>//12</b><br>II, IV<br>0,09<br>0,13<br>Iner reba<br><b>//12</b><br>II, IV | 0,10<br>0,10<br>0,10<br>0,10<br>0,10 | 5<br>0<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | M20<br>0,11<br>0,16<br>RA <sup>1)</sup><br>M20<br>0,07 | 0<br>0<br>0<br>0 | ,12<br>,18<br><b>124</b><br>,06 |
| Size<br>Un-cracked and<br>Displacement<br>Displacement<br><sup>1)</sup> Calculation of<br>Displacemen<br>( $\tau_{sd}$ : design b<br>Table C18: [<br>Size<br>Un-cracked and<br>Displacement<br>Displacement<br><sup>1)</sup> Calculation of<br>Displacement | d crack<br>f the dis<br>t for she<br>t for lon<br>bond str<br>Displac<br>d crack | and concrete; t<br>$\delta_{N0}$<br>$\delta_{N∞}$<br>splacement for or<br>ort term load = δ<br>rength)<br>cements und<br>and<br>and concrete; t<br>$\delta_{V0}$<br>$\delta_{V∞}$<br>splacement for or<br>ort term load = δ<br>and term load = δ<br>and term load = δ<br>by term load = δ | emperat<br>[mm<br>[mm<br>design lo<br>$\delta_{N0} \cdot \tau_{sd} /$<br>$N_{\infty} \cdot \tau_{sd} /$<br>er shea<br>emperat<br>design lo<br>$\delta_{V0} \cdot V_d /$ | ture rang<br>n/(N/mm <sup>2</sup> )<br>n/(N/mm <sup>2</sup> )<br>ad<br>1,4<br>1,4<br>1,4<br>ar load fe<br>ture rang<br>[mm/kN<br>[mm/kN<br>ad<br>1,4 | or fisch                          | <b>//12</b><br>II, IV<br>0,09<br>0,13<br>her reba<br><b>//12</b><br>II, IV  | 0,10<br>0,10<br>0,10<br>ar anch      | 5<br>0<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | M20<br>0,11<br>0,16<br>RA <sup>1)</sup><br>M20         | 0<br>0<br>0<br>0 | ,12<br>,18<br>124               |

## Table C19A: Characteristic values of resistance for fischer threaded rods FIS A and RGM under seismic action performance category C1 with FIS SB or capsule RSB in hammer drilled hole

| Size                                |                          |                    |        |        | M8                        | M10       | M12      | M16    | M20     | M24 | M27 <sup>5)</sup> | M30 |  |  |  |  |
|-------------------------------------|--------------------------|--------------------|--------|--------|---------------------------|-----------|----------|--------|---------|-----|-------------------|-----|--|--|--|--|
| Characteris                         | tic resistan             | ce ter             | nsior  | load   | , steel fa                | ailure    | 1        |        |         | 1   |                   |     |  |  |  |  |
|                                     | Zinc plated              | Prop               | erty   | 5.8    | 19                        | 29        | 43       | 79     | 123     | 177 | 230               | 281 |  |  |  |  |
| N <sub>Rk,s,C1</sub>                | steel                    | class              | 5      | 8.8    | 30                        | 47        | 68       | 126    | 196     | 282 | 368               | 449 |  |  |  |  |
|                                     | Stainless                | _                  |        | 50     | 19                        | 29        | 43       | 79     | 123     | 177 | 230               | 281 |  |  |  |  |
| [kN]                                | steel A4 and             | Prop<br>class      |        | 70     | 26                        | 41        | 59       | 110    | 172     | 247 | 322               | 393 |  |  |  |  |
|                                     | steel C                  | oluou              |        | 80     | 30                        | 47        | 68       | 126    | 196     | 282 | 368               | 449 |  |  |  |  |
|                                     | Zinc plated              | Prop               | erty   | 5.8    |                           |           |          |        | 1,50    |     |                   |     |  |  |  |  |
| 1)<br>γ <sub>M,s,C1</sub> .         | steel                    | class              | i      | 8.8    |                           |           |          |        | 1,50    |     |                   |     |  |  |  |  |
|                                     | Stainless                | Duese              |        | 50     | 2,86                      |           |          |        |         |     |                   |     |  |  |  |  |
| [-]                                 | steel A4 and             | Prop<br>class      |        | 70     | 1,50 <sup>2)</sup> / 1,87 |           |          |        |         |     |                   |     |  |  |  |  |
|                                     | steel C                  |                    |        | 80     | 1,6                       |           |          |        |         |     |                   |     |  |  |  |  |
| Characteris                         | tic bond res             | sistan             | ice, c | ombi   | ned pul                   | lout and  | concret  | e cone | failure |     |                   |     |  |  |  |  |
| Temperature range I <sup>3)</sup>   | τ <sub>Rk,C1</sub> [N/mm |                    | nm²]   | 4,6    | 5,0                       | 5,6       | 5,6      | 5,6    | 5,6     | 5,6 | 6,4               |     |  |  |  |  |
| Temperature range II <sup>3)</sup>  | ,                        | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 4,3                       | 4,6       | 5,6      | 5,6    | 5,6     | 5,6 | 5,3               | 6,0 |  |  |  |  |
| Temperature range III <sup>3)</sup> |                          | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 3,9                       | 4,3       | 4,9      | 4,9    | 4,9     | 4,9 | 4,5               | 5,1 |  |  |  |  |
| Temperature range IV <sup>3)</sup>  |                          | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 3,6                       | 3,9       | 4,5      | 4,5    | 4,5     | 4,5 | 4,1               | 4,7 |  |  |  |  |
| Characteris                         | tic resistan             | ce sh              | ear l  | oad, s | steel fail                | ure witho | out leve | r arm  |         |     |                   |     |  |  |  |  |
|                                     | Zinc                     | Prop               | perty  | 5.8    | 9                         | 15        | 21       | 39     | 61      | 89  | 115               | 141 |  |  |  |  |
| V <sub>Rk,s,C1</sub> 1)             | plated<br>steel          | class              | S      | 8.8    | 15                        | 23        | 34       | 63     | 98      | 141 | 184               | 225 |  |  |  |  |
|                                     | Stainless                |                    |        | 50     | 9                         | 15        | 21       | 39     | 61      | 89  | 115               | 141 |  |  |  |  |
| [kN]                                | steel A4<br>and steel    | Prop<br>class      |        | 70     | 13                        | 20        | 30       | 55     | 86      | 124 | 161               | 197 |  |  |  |  |
|                                     | C C                      | 043                |        | 80     | 15                        | 23        | 34       | 63     | 98      | 141 | 184               | 225 |  |  |  |  |

 $^{1)}$  For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0  $^{2)}$  f<sub>uk</sub> = 700 N/mm² ; f<sub>yk</sub> = 560 N/mm²  $^{3)}$  See Annex B 2  $^{4)}$  Only RSB  $^{5)}$  Only FIS SB

fischer Superbond

| Performances                     |
|----------------------------------|
| Design of bonded anchors         |
| Seismic performances category C1 |

**Table C19B:** Characteristic values of resistance for standard threaded rods under seismic action performance category C1 with mortar FIS SB or capsule RSB in hammer drilled hole

| Size               |                                  | М8                             | M10 | M12         | M16      | M20   | M24              | M27 <sup>2)</sup> | M30      |     |     |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
|--------------------|----------------------------------|--------------------------------|-----|-------------|----------|-------|------------------|-------------------|----------|-----|-----|-----|----------|--|--|--|---|--|--|--|----|---|----|----|----|----|----|----|----|
| Characte           | eristic resista                  | steel failu                    | ure |             |          |       |                  |                   |          |     |     |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
| Steel failure      |                                  |                                |     |             |          |       | See Tab          | ole C19A          | <b>\</b> |     |     |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
| combine<br>failure | eristic bond r<br>ed pullout and | See Table C19A                 |     |             |          |       |                  |                   |          |     |     |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
| Characte           | eristic resista                  |                                |     | eel failure | e withou | 15 15 | r <b>m</b><br>27 | 12                | 62       | 81  | 99  |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
|                    | Zinc plated                      |                                |     | Property .  | 5.8      |       |                  |                   |          | 43  |     | • · |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
| $V_{Rk,s,C1}$      | steel                            | class                          | 8.8 | 11          | 16       | 24    | 44               | 69                | 99       | 129 | 158 |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
|                    | Stainless                        | Property <sup>·</sup><br>class |     |             |          |       |                  |                   |          |     |     |     | <b>D</b> |  |  |  | _ |  |  |  | 50 | 6 | 11 | 15 | 27 | 43 | 62 | 81 | 99 |
| [kN]               | steel A4                         |                                | 70  | 9           | 14       | 21    | 39               | 60                | 87       | 113 | 138 |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |
|                    | and steel C                      | າd steel C <sup>class</sup> -  |     | 11          | 16       | 24    | 44               | 69                | 99       | 129 | 158 |     |          |  |  |  |   |  |  |  |    |   |    |    |    |    |    |    |    |

# **Table C20:** Characteristic values of resistance for reinforcing rebars under seismic action performance category C1 with mortar FIS SB in hammer drilled hole

|                                     |                       | Ø            | 8        | 10      | 12      | 14     | 16      | 20        | 25       | 28        | 32  |
|-------------------------------------|-----------------------|--------------|----------|---------|---------|--------|---------|-----------|----------|-----------|-----|
| Characteristic resista              | nce tensio            | n load, stee | el failu | ire     |         |        |         |           |          |           |     |
| N <sub>Rk,s,C1</sub>                |                       | [kN]         | 28       | 44      | 63      | 85     | 111     | 173       | 270      | 339       | 443 |
| Characteristic bond re              | esistance,            | combined     | pullou   | t and c | oncret  | e cone | failure | e (dry ai | nd wet o | concrete) |     |
| Temperature range I <sup>1)</sup>   | $\tau_{\text{Rk,C1}}$ | [N/mm²]      | 3,2      | 4,3     | 4,5     | 4,5    | 5,3     | 4,5       | 4,5      | 4,5       | 5,1 |
| Temperature range II <sup>1)</sup>  | $\tau_{\text{Rk,C1}}$ | [N/mm²]      | 3,2      | 3,9     | 4,1     | 4,1    | 4,9     | 4,5       | 4,5      | 4,5       | 5,1 |
| Temperature range III <sup>1)</sup> | $\tau_{\text{Rk,C1}}$ | [N/mm²]      | 2,8      | 3,6     | 3,8     | 3,8    | 4,5     | 4,1       | 4,1      | 4,1       | 4,7 |
| Temperature range IV <sup>1)</sup>  | $\tau_{Rk,C1}$        | [N/mm²]      | 2,5      | 3,2     | 3,4     | 3,4    | 4,1     | 3,8       | 3,8      | 3,8       | 4,3 |
| Characteristic resista              | nce shear             | load, steel  | failure  | e witho | ut leve | r arm  |         |           |          |           |     |
| V <sub>Rk,s,C1</sub>                |                       | [kN]         | 10       | 12      | 22      | 30     | 39      | 61        | 95       | 119       | 155 |
|                                     |                       |              |          |         |         |        |         |           |          |           |     |
| fischer Superbond                   |                       |              |          |         |         |        |         |           |          |           |     |

**Performances** Design of bonded anchors Seismic performances category C1 Table C21: Characteristic values of resistance for fischer threaded rods FIS A, RGM and standard threaded rods under seismic action performance category C2 with FIS SB in hammer drilled hole

| Size                                                 |                                                    |                     | M8               | M10     | M12     | M16      | M20      | M24  | M27  | M30 |     |
|------------------------------------------------------|----------------------------------------------------|---------------------|------------------|---------|---------|----------|----------|------|------|-----|-----|
| Characte                                             | ristic resistance t                                | ension load,        | steel fa         | ailure  |         |          |          |      |      |     |     |
|                                                      | 7:                                                 | Property            | 5.8              |         |         | 39       | 72       | 108  | 177  |     |     |
| N <sub>Rk,s,C2</sub>                                 | Zinc plated steel                                  | class               | 8.8              |         |         | 61       | 116      | 173  | 282  |     |     |
|                                                      |                                                    | - ·                 | 50               |         |         | 39       | 72       | 108  | 177  |     |     |
| [kN]                                                 | Stainless steel<br>A4 and steel C                  | Property class      | 70               |         |         | 53       | 101      | 152  | 247  |     |     |
|                                                      |                                                    | 01035               | 80               |         |         | 61       | 116      | 173  | 282  |     |     |
| Character                                            | ristic bond resista                                | ance, combi         | ned pul          | lout an | d conc  | rete co  | one fail | ure  |      |     |     |
| Temperatu                                            | re range Ι <sup>1)</sup> τ                         | Rk,C2               | N/mm²]           |         |         | 4,5      | 3,2      | 2,6  | 3,0  |     |     |
| Temperatu                                            | re range II <sup>1)</sup> τ                        | Rk,C2               | N/mm²]           |         |         | 4,5      | 3,2      | 2,6  | 3,0  |     |     |
| Temperatu                                            | Temperature range III <sup>1)</sup> $\tau_{Rk,C2}$ |                     |                  |         |         | 3,9      | 2,7      | 2,3  | 2,6  |     |     |
| Temperature range IV <sup>1)</sup> $	au_{Rk,C2}$ [N/ |                                                    |                     | N/mm²]           |         |         | 3,6      | 2,5      | 2,1  | 2,4  |     |     |
|                                                      |                                                    |                     |                  |         |         |          |          |      |      |     |     |
|                                                      |                                                    |                     | l/mm²)]          |         |         | 0,09     | 0,10     | 0,11 | 0,12 |     |     |
|                                                      | $\delta_{N,(ULS)}^{3)}$                            | [mm/(N              | √mm²)]           |         |         | 0,15     | 0,17     | 0,17 | 0,18 |     |     |
|                                                      |                                                    |                     |                  |         |         |          |          |      |      |     |     |
|                                                      |                                                    |                     |                  |         |         |          |          |      |      |     |     |
| Character                                            | ristic resistance s                                | shear load, s       | teel fail        | ure wit | hout le | ever ari | n        |      | -    | -   |     |
|                                                      | Zinc plated steel                                  | Property            | 5.8              | -       | -       | 13,9     | 27,3     | 42,7 | 62,3 | -   | -   |
| V <sub>Rk,s,C2</sub> <sup>2)</sup>                   |                                                    | class               | 8.8              | -       | -       | 22,4     | 44,1     | 68,6 | 98,7 | -   | -   |
|                                                      | Otalalaan at cil A                                 |                     | 50               | -       | -       | 13,9     | 27,3     | 42,7 | 62,3 | -   | -   |
| [kN]                                                 | Stainless steel A4<br>and steel C                  | 4 Property<br>class | 70               | -       | -       | 19,8     | 38,5     | 60,2 | 86,8 | -   | -   |
|                                                      |                                                    |                     | 80               | -       | -       | 22,4     | 44,1     | 68,6 | 98,7 | -   | -   |
|                                                      | s 4)                                               | F                   | 11               |         |         | 0.40     | 0.40     | 0.07 |      |     |     |
|                                                      | OV,(DLS)                                           |                     | $\frac{1}{mm^2}$ | -       | -       | 0,18     | 0,10     | 0,07 | 0,06 | -   | -   |
|                                                      | δ <sub>V,(ULS)</sub> 4)                            | [mm/(N              | $\sqrt{(mm^2)}$  | -       | - 1     | 0,25     | 0,14     | 0,11 | 0,09 | - 1 | I - |

<sup>1)</sup> See Annex B 2
 <sup>2)</sup> For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0

<sup>3)</sup> Calculation for displacement

<sup>4)</sup> Calculation for displacement

 $\delta_{N0} = \delta_{N0-Faktor} \cdot \tau;$  $\delta_{N^{\infty}} = \delta_{N^{\infty}\text{-}\mathsf{Faktor}} \bullet \tau;$ 

 $\delta_{V0} = \delta_{V0-Faktor} \cdot V;$  $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \bullet V;;$ 

| Performances                     |
|----------------------------------|
| Design of bonded anchors         |
| Seismic performances category C2 |